Abstract
We have performed experiments on single-wall carbon nanotube (SWNT) networks and compared with density-functional theory (DFT) calculations to identify the microscopic origin of the observed sensitivity of the network conductivity to physisorbed O-2 and N-2. Previous DFT calculations of the transmission function for isolated pristine SWNTs have found physisorbed molecules have little influence on their conductivity. However, by calculating the four-terminal transmission function of crossed SWNT junctions, we show that physisorbed O-2 and N-2 do affect the junction's conductance. This may be understood as an increase in tunneling probability due to hopping via molecular orbitals. We find the effect is substantially larger for O-2 than for N-2, and for semiconducting rather than metallic SWNTs junctions, in agreement with experiment.
Original language | English |
---|---|
Journal | Physical Review B Condensed Matter |
Volume | 79 |
Issue number | 19 |
Pages (from-to) | 195431 |
ISSN | 0163-1829 |
DOIs | |
Publication status | Published - 2009 |
Bibliographical note
Copyright 2009 American Physical SocietyKeywords
- carbon nanotubes
- electrical conductivity
- density functional theory
- electric admittance
- adsorption
- tunnelling