TY - JOUR
T1 - Influence of local geoid variation on water surface elevation estimates derived from multi-mission altimetry for Lake Namco
AU - Jiang, Liguang
AU - Andersen, Ole Baltazar
AU - Nielsen, Karina
AU - Zhang, Guoqing
AU - Bauer-Gottwein, Peter
PY - 2019
Y1 - 2019
N2 - Water surface elevation (WSE) is an essential quantity for water resource monitoring and hydrodynamic modeling. Satellite altimetry has provided data for inland water bodies. The height that is derived from altimetry measurement is ellipsoidal height. In order to convert the ellipsoidal height to orthometric height, which has physical meaning, accurate estimates of the geoid are needed. This paper evaluates the suitability of geodetic altimetric measurements for improvement of global geoid models over a large lake in the Tibetan Plateau. CryoSat-2 and SARAL/AltiKa are used to derive the high-frequency geoid correction. A validation of the local geoid correction is performed with data from in-situ observations, a laser altimetry satellite (ICESat), a Ka-band radar altimetry satellite (SARAL) and a SAR radar altimetry satellite (Sentinel-3). Results indicate that the geodetic altimetric dataset can capture the high-resolution geoid information. By applying local geoid correction, the precision of ICESat, SARAL and Sentinel-3 retrievals are significantly improved. We conclude that using geodetic altimetry to correct for local geoid residual over large lakes significantly decreases the uncertainty of WSE estimates. These results also indicate the potential of geodetic altimetry missions to determine local geoid residual with centimeter-level accuracy, which can be used to improve global and regional geopotential models.
AB - Water surface elevation (WSE) is an essential quantity for water resource monitoring and hydrodynamic modeling. Satellite altimetry has provided data for inland water bodies. The height that is derived from altimetry measurement is ellipsoidal height. In order to convert the ellipsoidal height to orthometric height, which has physical meaning, accurate estimates of the geoid are needed. This paper evaluates the suitability of geodetic altimetric measurements for improvement of global geoid models over a large lake in the Tibetan Plateau. CryoSat-2 and SARAL/AltiKa are used to derive the high-frequency geoid correction. A validation of the local geoid correction is performed with data from in-situ observations, a laser altimetry satellite (ICESat), a Ka-band radar altimetry satellite (SARAL) and a SAR radar altimetry satellite (Sentinel-3). Results indicate that the geodetic altimetric dataset can capture the high-resolution geoid information. By applying local geoid correction, the precision of ICESat, SARAL and Sentinel-3 retrievals are significantly improved. We conclude that using geodetic altimetry to correct for local geoid residual over large lakes significantly decreases the uncertainty of WSE estimates. These results also indicate the potential of geodetic altimetry missions to determine local geoid residual with centimeter-level accuracy, which can be used to improve global and regional geopotential models.
KW - CryoSat-2
KW - Lake Namco
KW - Local geoid
KW - Satellite altimetry
KW - Water level
KW - Aneroid altimeters
U2 - 10.1016/j.rse.2018.11.004
DO - 10.1016/j.rse.2018.11.004
M3 - Journal article
SN - 0034-4257
VL - 221
SP - 65
EP - 79
JO - Remote Sensing of Environment
JF - Remote Sensing of Environment
ER -