The present study investigates conversion of char-N to NO in mixtures of O$_2$/N$_2$ and in O$_2$/H$_2$O/N$_2$. Biomass particles of spruce bark were combusted in an electrically heated single particle reactor at 900°C at various O$_2$/H$_2$O/N$_2$ concentrations. NO concentrations of the product gases were measured during the char combustion stage. The conversion of char-N to NO was significantly higher with H$_2$O as compared to without H$_2$O in the gas. Additional fixed bed experiments were conducted to investigate the products of the reaction between H$_2$O and spruce bark char. The results showed that NH$_3$ is the primary product in the reaction between char-N and steam. These results explain the observation that more NO is formed during char combustion in the presence of steam: the char-N reacts partly with H$_2$O to form NH$_3$, which reacts further to NO.

General information
Publication status: Published
Organisations: Department of Chemical and Biochemical Engineering, CHEC Research Centre, Åbo Akademi University
Corresponding author: Karlström, O.
Contributors: Karlström, O., Wu, H., Glarborg, P.
Pages: 1260-1265
Publication date: 2019
Peer-reviewed: Yes

Publication information
Journal: Fuel
Volume: 235
ISSN (Print): 0016-2361
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
Original language: English
Keywords: Biomass, Char, NO, NH$_3$, Gasification, Steam gasification, Combustion, Oxidation
DOIs: 10.1016/j.fuel.2018.08.156
Source: FindIt
Source ID: 2438716117
Research output: Contribution to journal › Journal article – Annual report year: 2019 › Research › peer-review