Influence of bulk dielectric polarization upon partial discharge transients effect of heterogeneous dielectric geometry

A physically valid theory of partial discharge (PD) transients is based upon the concept of the charge induced upon the detecting electrode by the PD. This induced charge consists of two components. One is associated with the actual space charge in the void, while the other is related to changes in the polarization of the bulk dielectric. These changes are brought about by the field produced by the space charge. The magnitude of the induced charge and its components are examined for several heterogeneous dielectric systems. It is demonstrated that, in relation to a homogeneous dielectric system, the magnitude of the induced charge either increases or decreases depending on the ratio of the dielectric permittivities and within which dielectric the void is located. It is shown that this behavior is directly related to the magnitude and polarity of the polarization component of the induced charge. Furthermore, we demonstrate that the geometry of the dielectric system and the physical dimensions of the different dielectrics influence in a similar manner the magnitude of the induced charge, although to a lesser degree.

General information
Publication status: Published
Organisations: Department of Electrical Engineering, Department of Electric Power Engineering
Contributors: McAllister, I. W., Crichton, G. C.
Pages: 124-132
Publication date: 2000
Peer-reviewed: Yes

Publication information
Journal: IEEE Transactions on Dielectrics and Electrical Insulation
Volume: 7
Issue number: 1
ISSN (Print): 1070-9878
Ratings:
Scopus rating (2000): SJR 0.323 SNIP 0.874
Web of Science (2000): Indexed yes
Original language: English
Electronic versions:
iw.pdf
DOIs:
10.1109/94.839350

Bibliographical note
Copyright: 2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE
Source: orbit
Source ID: 177649
Research output: Contribution to journal › Journal article – Annual report year: 2000 › Research › peer-review