Inflammatory response and genotoxicity of seven wood dusts in the human epithelial cell line A549

Jette Bornholdt, Anne T. Saber, Anoop Kumar Sharma, Kai Savolainen, Ulla Birgitte Vogel, Håkan Wallin

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

Exposure to wood dust is common in many workplaces. Epidemiological studies indicate that occupational exposure to hardwood dusts is more harmful than to softwood dusts. In this study, human epithelial cell line A549 was incubated with well-characterized dusts from six commonly used wood species and from medium density fibreboard (MDF), at concentrations between 10 and 300 mu g/ml. After 3 and 6 h of incubation, genotoxicity was assessed by measurement of DNA damage with the single-cell gel electrophoresis (comet) assay and inflammation was measured by the expression of IL-6 and IL-8 mRNA and by the amount of IL-8 protein. There was a 1.2-1.4-fold increase in DNA strand breaks after incubation with beech, teak, pine and MDF dusts compared with the levels in untreated cells, but after 6 h only the increase induced by the MDF dust remained. Increased expression of cellular IL-6 and IL-8 mRNA was induced by all of the wood dusts at both times. Similar to IL-8 mRNA expression, the amounts of secreted IL-8 protein were elevated, except after incubation with oak dust, where a marginal reduction was seen. On the basis of the effects on IL-8 mRNA expression, the wood dusts could be divided into three groups, with teak dust being the most potent, MDF, birch, spruce and pine being intermediate, and beech and oak being the least potent. The induction of DNA strand breaks did not correlate well with the interleukin response. In conclusion, all wood dusts induced cytokine responses, and some dusts induced detectable DNA damage. The inflammatory potency seemed intermediate for dusts from the typical softwoods spruce and pine, whereas the dusts from species linked to cancer, beech and oak, were the least inflammatory. The variation of the effects induced by different wood dusts over time indicates that the DNA damage was not secondary to the cytokine response. Although hardwoods are often considered more harmful than softwoods by regulatory agencies, the current experiments do not provide evidence for a clear-cut distinction between toxicities of hardwood and softwood dust.
Original languageEnglish
JournalMutation Research - Genetic Toxicology and Environmental Mutagenesis
Volume632
Issue number1-2
Pages (from-to)78-88
ISSN1383-5718
DOIs
Publication statusPublished - 2007
Externally publishedYes

Cite this

Bornholdt, Jette ; Saber, Anne T. ; Sharma, Anoop Kumar ; Savolainen, Kai ; Vogel, Ulla Birgitte ; Wallin, Håkan. / Inflammatory response and genotoxicity of seven wood dusts in the human epithelial cell line A549. In: Mutation Research - Genetic Toxicology and Environmental Mutagenesis. 2007 ; Vol. 632, No. 1-2. pp. 78-88.
@article{58df4e90dd154681a5e47b98008bdedc,
title = "Inflammatory response and genotoxicity of seven wood dusts in the human epithelial cell line A549",
abstract = "Exposure to wood dust is common in many workplaces. Epidemiological studies indicate that occupational exposure to hardwood dusts is more harmful than to softwood dusts. In this study, human epithelial cell line A549 was incubated with well-characterized dusts from six commonly used wood species and from medium density fibreboard (MDF), at concentrations between 10 and 300 mu g/ml. After 3 and 6 h of incubation, genotoxicity was assessed by measurement of DNA damage with the single-cell gel electrophoresis (comet) assay and inflammation was measured by the expression of IL-6 and IL-8 mRNA and by the amount of IL-8 protein. There was a 1.2-1.4-fold increase in DNA strand breaks after incubation with beech, teak, pine and MDF dusts compared with the levels in untreated cells, but after 6 h only the increase induced by the MDF dust remained. Increased expression of cellular IL-6 and IL-8 mRNA was induced by all of the wood dusts at both times. Similar to IL-8 mRNA expression, the amounts of secreted IL-8 protein were elevated, except after incubation with oak dust, where a marginal reduction was seen. On the basis of the effects on IL-8 mRNA expression, the wood dusts could be divided into three groups, with teak dust being the most potent, MDF, birch, spruce and pine being intermediate, and beech and oak being the least potent. The induction of DNA strand breaks did not correlate well with the interleukin response. In conclusion, all wood dusts induced cytokine responses, and some dusts induced detectable DNA damage. The inflammatory potency seemed intermediate for dusts from the typical softwoods spruce and pine, whereas the dusts from species linked to cancer, beech and oak, were the least inflammatory. The variation of the effects induced by different wood dusts over time indicates that the DNA damage was not secondary to the cytokine response. Although hardwoods are often considered more harmful than softwoods by regulatory agencies, the current experiments do not provide evidence for a clear-cut distinction between toxicities of hardwood and softwood dust.",
author = "Jette Bornholdt and Saber, {Anne T.} and Sharma, {Anoop Kumar} and Kai Savolainen and Vogel, {Ulla Birgitte} and H{\aa}kan Wallin",
year = "2007",
doi = "10.1016/j.mrgentox.2007.04.016",
language = "English",
volume = "632",
pages = "78--88",
journal = "Mutation Research - Genetic Toxicology and Environmental Mutagenesis",
issn = "1383-5718",
publisher = "Elsevier",
number = "1-2",

}

Inflammatory response and genotoxicity of seven wood dusts in the human epithelial cell line A549. / Bornholdt, Jette; Saber, Anne T.; Sharma, Anoop Kumar; Savolainen, Kai; Vogel, Ulla Birgitte; Wallin, Håkan.

In: Mutation Research - Genetic Toxicology and Environmental Mutagenesis, Vol. 632, No. 1-2, 2007, p. 78-88.

Research output: Contribution to journalJournal articleResearchpeer-review

TY - JOUR

T1 - Inflammatory response and genotoxicity of seven wood dusts in the human epithelial cell line A549

AU - Bornholdt, Jette

AU - Saber, Anne T.

AU - Sharma, Anoop Kumar

AU - Savolainen, Kai

AU - Vogel, Ulla Birgitte

AU - Wallin, Håkan

PY - 2007

Y1 - 2007

N2 - Exposure to wood dust is common in many workplaces. Epidemiological studies indicate that occupational exposure to hardwood dusts is more harmful than to softwood dusts. In this study, human epithelial cell line A549 was incubated with well-characterized dusts from six commonly used wood species and from medium density fibreboard (MDF), at concentrations between 10 and 300 mu g/ml. After 3 and 6 h of incubation, genotoxicity was assessed by measurement of DNA damage with the single-cell gel electrophoresis (comet) assay and inflammation was measured by the expression of IL-6 and IL-8 mRNA and by the amount of IL-8 protein. There was a 1.2-1.4-fold increase in DNA strand breaks after incubation with beech, teak, pine and MDF dusts compared with the levels in untreated cells, but after 6 h only the increase induced by the MDF dust remained. Increased expression of cellular IL-6 and IL-8 mRNA was induced by all of the wood dusts at both times. Similar to IL-8 mRNA expression, the amounts of secreted IL-8 protein were elevated, except after incubation with oak dust, where a marginal reduction was seen. On the basis of the effects on IL-8 mRNA expression, the wood dusts could be divided into three groups, with teak dust being the most potent, MDF, birch, spruce and pine being intermediate, and beech and oak being the least potent. The induction of DNA strand breaks did not correlate well with the interleukin response. In conclusion, all wood dusts induced cytokine responses, and some dusts induced detectable DNA damage. The inflammatory potency seemed intermediate for dusts from the typical softwoods spruce and pine, whereas the dusts from species linked to cancer, beech and oak, were the least inflammatory. The variation of the effects induced by different wood dusts over time indicates that the DNA damage was not secondary to the cytokine response. Although hardwoods are often considered more harmful than softwoods by regulatory agencies, the current experiments do not provide evidence for a clear-cut distinction between toxicities of hardwood and softwood dust.

AB - Exposure to wood dust is common in many workplaces. Epidemiological studies indicate that occupational exposure to hardwood dusts is more harmful than to softwood dusts. In this study, human epithelial cell line A549 was incubated with well-characterized dusts from six commonly used wood species and from medium density fibreboard (MDF), at concentrations between 10 and 300 mu g/ml. After 3 and 6 h of incubation, genotoxicity was assessed by measurement of DNA damage with the single-cell gel electrophoresis (comet) assay and inflammation was measured by the expression of IL-6 and IL-8 mRNA and by the amount of IL-8 protein. There was a 1.2-1.4-fold increase in DNA strand breaks after incubation with beech, teak, pine and MDF dusts compared with the levels in untreated cells, but after 6 h only the increase induced by the MDF dust remained. Increased expression of cellular IL-6 and IL-8 mRNA was induced by all of the wood dusts at both times. Similar to IL-8 mRNA expression, the amounts of secreted IL-8 protein were elevated, except after incubation with oak dust, where a marginal reduction was seen. On the basis of the effects on IL-8 mRNA expression, the wood dusts could be divided into three groups, with teak dust being the most potent, MDF, birch, spruce and pine being intermediate, and beech and oak being the least potent. The induction of DNA strand breaks did not correlate well with the interleukin response. In conclusion, all wood dusts induced cytokine responses, and some dusts induced detectable DNA damage. The inflammatory potency seemed intermediate for dusts from the typical softwoods spruce and pine, whereas the dusts from species linked to cancer, beech and oak, were the least inflammatory. The variation of the effects induced by different wood dusts over time indicates that the DNA damage was not secondary to the cytokine response. Although hardwoods are often considered more harmful than softwoods by regulatory agencies, the current experiments do not provide evidence for a clear-cut distinction between toxicities of hardwood and softwood dust.

U2 - 10.1016/j.mrgentox.2007.04.016

DO - 10.1016/j.mrgentox.2007.04.016

M3 - Journal article

VL - 632

SP - 78

EP - 88

JO - Mutation Research - Genetic Toxicology and Environmental Mutagenesis

JF - Mutation Research - Genetic Toxicology and Environmental Mutagenesis

SN - 1383-5718

IS - 1-2

ER -