Abstract
Convex relaxations of AC optimal power flow (AC-OPF) problems have attracted significant interest as in several instances they provably yield the global optimum to the original non-convex problem. If, however, the relaxation is inexact, the obtained solution is not AC-feasible. The quality of the obtained solution is essential for several practical applications of AC-OPF, but detailed analyses are lacking in existing literature. This paper aims to cover this gap. We provide an in-depth investigation of the solution characteristics when convex relaxations are inexact, we assess the most promising AC feasibility recovery methods for large-scale systems, and we propose two new metrics that lead to a better understanding of the quality of the identified solutions. We perform a comprehensive assessment on 96 different test cases, ranging from 14 to 3120 buses, and we show the following: (i) Despite an optimality gap of less than 1%, several test cases still exhibit substantial distances to both AC feasibility and local optimality and the newly proposed metrics characterize these deviations. (ii) Penalization methods fail to recover an AC-feasible solution in 15 out of 45 test cases. (iii) The computational benefits of warm-starting non-convex solvers have significant variation, but a computational speedup exists in over 75% of cases.
Original language | English |
---|---|
Article number | 106480 |
Journal | Electric Power Systems Research |
Volume | 187 |
Number of pages | 12 |
ISSN | 0378-7796 |
DOIs | |
Publication status | Published - Oct 2020 |
Keywords
- Convex quadratic optimization
- Nonlinear programming
- Optimal power flow
- Semidefinite programming