Indicial lift response function: an empirical relation for finite‐thickness airfoils, and effects on aeroelastic simulations

Leonardo Bergami, Mac Gaunaa, Joachim Christian Heinz

Research output: Contribution to journalJournal articleResearchpeer-review

1398 Downloads (Pure)

Abstract

The aeroelastic response of wind turbines is often simulated in the time domain by using indicial response techniques. Unsteady aerodynamics in attached flow are usually based on Jones's approximation of the flat plate indicial response, although the response for finite‐thickness airfoils differs from the flat plate one. The indicial lift response of finite‐thickness airfoils is simulated with a panel code, and an empirical relation is outlined connecting the airfoil indicial response to its geometric characteristics. The effects of different indicial approximations are evaluated on a 2D profile undergoing harmonic pitching motion in the attached flow region; the resulting lift forces are compared with computational fluid dynamics (CFD) simulations. The relevance for aeroelastic simulations of a wind turbine is also evaluated, and the effects are quantified in terms of variations of equivalent fatigue loads, ultimate loads, and stability limits. The agreement with CFD computations of a 2D profile in harmonic motion is improved by the indicial function accounting for the finite‐thickness of the airfoil. Concerning the full wind turbine aeroelastic behavior, the differences between simulations on the basis of Jones's and finite‐thickness indicial response functions are rather small; Jones's flat‐plate approximation results in only slightly larger fatigue and ultimate loads, and lower stability limits. Copyright © 2012 John Wiley & Sons, Ltd.
Original languageEnglish
JournalWind Energy
Volume16
Issue number5
Pages (from-to)681-693
ISSN1095-4244
DOIs
Publication statusPublished - 2013

Keywords

  • Indicial lift response function
  • Jones’s flat plate approximation
  • Unsteady lift in attached flow

Fingerprint

Dive into the research topics of 'Indicial lift response function: an empirical relation for finite‐thickness airfoils, and effects on aeroelastic simulations'. Together they form a unique fingerprint.

Cite this