Increasing temperature counteracts the impact of parasitism on periwinkle consumption -

Increasing temperature counteracts the impact of parasitism on periwinkle consumption

Parasites often have key structuring roles in natural communities. For instance, trematode infections significantly reduce consumption by the herbivorous gastropod *Littorina littorea*, in turn affecting the composition of coastal macroalgal communities on which the snail grazes. However, trematodes are extremely sensitive to temperature changes, in that production and release of infective stages (cercariae) from the snail host are strongly accelerated by increasing temperature. Hence, trematode-infected periwinkles may increase their rates of consumption under warmer conditions to support the additional energetic burden exerted through elevated cercarial shedding. We therefore hypothesized that the combined effect of higher temperatures and parasitism may neutralize the negative impact trematodes otherwise have on periwinkle consumption. To test this, we performed a microcosm experiment examining the combined effect of infection and temperature on the snails' consumption of the green macroalgae *Ulva lactuca*. Our results show an overall positive effect of temperature on consumption by larger periwinkles, but particularly so in trematode-infected specimens. Whereas infected snails consumed less than uninfected ones at 18 degrees C, no difference was evident at 21 degrees C. Hence, the synergy between parasitism and a relevant temperature increase, e.g. in lieu of expected global warming within this century (3 degrees C), may indeed counteract the generally negative impact of trematodes on periwinkle grazing.

General information

Publication status: Published
Organisations: Aarhus University
Contributors: Larsen, M. H., Mouritsen, K. N.
Pages: 141-149
Publication date: 2009
Peer-reviewed: Yes

Publication information

Journal: Marine Ecology Progress Series
Volume: 383
ISSN (Print): 0171-8630
Ratings:
Web of Science (2009): Indexed yes
Original language: English
Keywords: cercarial shedding, energetic burden, global warming, macroalgal community composition, parasitism, temperature change, trematode infection parasitic disease etiology, Algae Plantae (Algae, Microorganisms, Nonvascular Plants, Plants) - Chlorophyta [13300] Ulva lactuca species macroalgae common host, Mollusca Invertebrata Animalia (Animals, Invertebrates, Mollusks) - Gastropoda [61200] Littorina littorea species periwinkle common parasite, 60502, Parasitology - General, 64026, Invertebrata: comparative, experimental morphology, physiology and pathology - Mollusca, microcosm experiment laboratory techniques, Parasitology
Electronic versions:
10.3354/meps08021
Source: dtu
Source-ID: n:oai:DTIC-ART:biosis/164107875::32158
Research output: Contribution to journal › Journal article – Annual report year: 2009 › Research › peer-review