Increasing jojoba-like wax ester production in Saccharomyces cerevisiae by enhancing very long-chain, monounsaturated fatty acid synthesis

Leonie Wenning, Christer S. Ejsing, Florian David, Richard R. Sprenger, Jens Nielsen, Verena Siewers*

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

290 Downloads (Pure)

Abstract

Background: Fatty acids (FAs) with a chain length of more than 18 carbon atoms (> C18) are interesting for the production of specialty compounds derived from these FAs. These compounds include free FAs, like erucic acid (C22:1-Δ13), primary fatty alcohols (FOHs), like docosanol (C22:0-FOH), as well as jojoba-like wax esters (WEs) (C38-WE to C44-WE), which are esters of (very) long-chain FAs and (very) long-chain FOHs. In particular, FAs, FOHs and WEs are used in the production of chemicals, pharmaceuticals and cosmetic products. Jojoba seed oil is highly enriched in diunsaturated WEs with over 70 mol% being composed of C18:1-C24:1 monounsaturated FOH and monounsaturated FA moieties. In this study, we aim for the production of jojoba-like WEs in the yeast Saccharomyces cerevisiae by increasing the amount of very long-chain, monounsaturated FAs and simultaneously expressing enzymes required for WE synthesis. Results: We show that the combined expression of a plant-derived fatty acid elongase (FAE/KCS) from Crambe abyssinica (CaKCS) together with the yeast intrinsic fatty acid desaturase (FAD) Ole1p leads to an increase in C20:1 and C22:1 FAs in S. cerevisiae. We also demonstrate that the best enzyme candidate for C24:1 FA production in S. cerevisiae is a FAE derived from Lunaria annua (LaKCS). The combined overexpression of CaKCS and Ole1p together with a fatty acyl reductase (FAR/FAldhR) from Marinobacter aquaeolei VT8 (MaFAldhR) and a wax synthase (WS) from Simmondsia chinensis (SciWS) in a S. cerevisiae strain, overexpressing a range of other enzymes involved in FA synthesis and elongation, leads to a yeast strain capable of producing high amounts of monounsaturated FOHs (up to C22:1-FOH) as well as diunsaturated WEs (up to C46:2-WE). Conclusions: Changing the FA profile of the yeast S. cerevisiae towards very long-chain monounsaturated FAs is possible by combined overexpression of endogenous and heterologous enzymes derived from various sources (e.g. a marine copepod or plants). This strategy was used to produce jojoba-like WEs in S. cerevisiae and can potentially be extended towards other commercially interesting products derived from very long-chain FAs.
Original languageEnglish
Article number49
JournalMicrobial Cell Factories
Volume18
Issue number49
ISSN1475-2859
DOIs
Publication statusPublished - 2019

Keywords

  • Saccharomyces cerevisiae
  • Very long-chain monounsaturated fatty acids
  • Very long-chain monounsaturated fatty alcohols
  • Jojoba-like wax esters

Fingerprint

Dive into the research topics of 'Increasing jojoba-like wax ester production in Saccharomyces cerevisiae by enhancing very long-chain, monounsaturated fatty acid synthesis'. Together they form a unique fingerprint.

Cite this