Incorporating evanescent modes and flow losses into reference impedances in acoustic Thévenin calibration

Kren Rahbek Nørgaard, Efren Fernandez Grande

Research output: Contribution to journalJournal articleResearchpeer-review

198 Downloads (Pure)


This paper proposes an alternative approach to acoustic Thevenin calibration of an ear probe. An existing methodology derives the Thevenin-equivalent source parameters from the measured probe pressures in a number of short waveguides by solving an overdetermined system of equations. This existing methodology is affected by errors caused by evanescent modes when the waveguide model lengths are estimated. These errors introduce a parallel acoustic compliance into the source parameters. The proposed methodology takes into account evanescent modes and flow losses in the transition between the probe tube and waveguides during calibration. This is achieved by positioning the probe tube, without an ear tip, flush with the input plane in waveguides of well-defined dimensions and utilizing the physical rather than estimated lengths to calculate the analytical waveguide models. Terms that model evanescent modes and flow losses are added to the plane-wave impedance and adjusted to minimize the calibration error. It is shown that this method can reduce the calibration error across a wide frequency range and remove the parallel compliance from the source parameters. This approach leads to an independence of the source parameters on the calibration waveguide radius, though subsequent impedance measurements are still affected by evanescent modes.
Original languageEnglish
JournalJournal of the Acoustical Society of America
Issue number5
Pages (from-to)3013–3024
Publication statusPublished - 2017


Dive into the research topics of 'Incorporating evanescent modes and flow losses into reference impedances in acoustic Thévenin calibration'. Together they form a unique fingerprint.

Cite this