TY - JOUR
T1 - In vivo study of experimental pneumococcal meningitis using magnetic resonance imaging
AU - Brandt, Christian T.
AU - Simonsen, Helle
AU - Liptrot, Matthew George
AU - Søgaard, Lise V.
AU - Lundgren, Jens D.
AU - Frimodt-Møller, Niels
AU - Rowland, Ian J.
PY - 2008
Y1 - 2008
N2 - Background
Magnetic Resonance Imaging (MRI) methods were evaluated as a tool for the study of experimental meningitis. The identification and characterisation of pathophysiological parameters that vary during the course of the disease could be used as markers for future studies of new treatment strategies.
Methods
Rats infected intracisternally with S. pneumoniae (n = 29) or saline (n = 13) were randomized for imaging at 6, 12, 24, 30, 36, 42 or 48 hours after infection. T1W, T2W, quantitative diffusion, and post contrast T1W images were acquired at 4.7 T. Dynamic MRI (dMRI) was used to evaluate blood-brain-barrier (BBB) permeability and to obtain a measure of cerebral and muscle perfusion. Clinical- and motor scores, bacterial counts in CSF and blood, and WBC counts in CSF were measured.
Results
MR images and dMRI revealed the development of a highly significant increase in BBB permeability (P < 0.002) and ventricle size (P < 0.0001) among infected rats. Clinical disease severity was closely related to ventricle expansion (P = 0.024).
Changes in brain water distribution, assessed by ADC, and categorization of brain ‘perfusion’ by cortex ΔSI(bolus) were subject to increased inter-rat variation as the disease progressed, but without overall differences compared to uninfected rats (P > 0.05). Areas of well-‘perfused’ muscle decreased with the progression of infection indicative of septicaemia (P = 0.05).
Conclusion
The evolution of bacterial meningitis was successfully followed in-vivo with MRI. Increasing BBB-breakdown and ventricle size was observed in rats with meningitis whereas changes in brain water distribution were heterogeneous. MRI will be a valuable technique for future studies aiming at evaluating or optimizing adjunctive treatments
AB - Background
Magnetic Resonance Imaging (MRI) methods were evaluated as a tool for the study of experimental meningitis. The identification and characterisation of pathophysiological parameters that vary during the course of the disease could be used as markers for future studies of new treatment strategies.
Methods
Rats infected intracisternally with S. pneumoniae (n = 29) or saline (n = 13) were randomized for imaging at 6, 12, 24, 30, 36, 42 or 48 hours after infection. T1W, T2W, quantitative diffusion, and post contrast T1W images were acquired at 4.7 T. Dynamic MRI (dMRI) was used to evaluate blood-brain-barrier (BBB) permeability and to obtain a measure of cerebral and muscle perfusion. Clinical- and motor scores, bacterial counts in CSF and blood, and WBC counts in CSF were measured.
Results
MR images and dMRI revealed the development of a highly significant increase in BBB permeability (P < 0.002) and ventricle size (P < 0.0001) among infected rats. Clinical disease severity was closely related to ventricle expansion (P = 0.024).
Changes in brain water distribution, assessed by ADC, and categorization of brain ‘perfusion’ by cortex ΔSI(bolus) were subject to increased inter-rat variation as the disease progressed, but without overall differences compared to uninfected rats (P > 0.05). Areas of well-‘perfused’ muscle decreased with the progression of infection indicative of septicaemia (P = 0.05).
Conclusion
The evolution of bacterial meningitis was successfully followed in-vivo with MRI. Increasing BBB-breakdown and ventricle size was observed in rats with meningitis whereas changes in brain water distribution were heterogeneous. MRI will be a valuable technique for future studies aiming at evaluating or optimizing adjunctive treatments
U2 - 10.1186/1471-2342-8-1
DO - 10.1186/1471-2342-8-1
M3 - Journal article
C2 - 18194516
SN - 1471-2342
VL - 8
SP - 1
EP - 11
JO - B M C Medical Imaging
JF - B M C Medical Imaging
IS - 1
ER -