In vitro fermentation of key dietary compounds with rumen fluid: A genome-centric perspective

The anaerobic decomposition of organic substrates leads to the generation of gases, such as methane, which can either be a valuable energy carrier in industrial applications or can be considered as a main greenhouse gas when it is naturally emitted. In this study we investigated in vitro the effect of dietary compounds, such as starch and proteins, on the microbial community present in the rumen fluid. High throughput shotgun sequencing, followed by metagenomic assembly and binning allowed the extraction of 18 genome bins. A composite bioinformatic analysis led to the prediction of metabolic pathways involved in the degradation of dietary compounds and in the biosynthesis of crucial products like propionate, methane and ammonia. The identification of genomes belonging to poorly characterized phyla such as Thermoplasmata and Elusimicrobia shed light on their putative role. The high abundance of methylotrophic archaea in the inoculum suggests a relevant role in methane production.

General information
Publication status: Published
Organisations: Department of Environmental Engineering, Residual Resource Engineering, University of Padova
Number of pages: 9
Pages: 683-691
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Science of the Total Environment
Volume: 584-585
ISSN (Print): 0048-9697
Ratings:
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 4.98 SJR 1.546 SNIP 1.674
Web of Science (2017): Impact factor 4.61
Web of Science (2017): Indexed yes
Original language: English
Keywords: Environmental Engineering, Environmental Chemistry, Waste Management and Disposal, Pollution, Ammonia, Anaerobic digestion, Diets, Metagenomics, Methane, Methylo trophs, Bins, Biochemistry, Genes, Greenhouse gases, Microorganisms, Nutrition, Anaerobic decomposition, Bioinformatic analysis, Metabolic pathways, Methane production, Microbial communities, Organic substrate
DOIs: 10.1016/j.scitotenv.2017.01.096
Source: FindIt
Source ID: 2351562947
Research output: Contribution to journal › Journal article – Annual report year: 2017 › Research › peer-review