Abstract
The interaction of Cu(111), Au(111) and Cu-covered Au(111) electrodes with a neutral phosphate buffer solution has been studied by means of cyclic voltammetry (CV) and in situ electrochemical scanning tunneling microscopy (EC-STM). Under low potential conditions, both the Cu(111) and the Au(111) surface appear apparently adsorbate free, indicated by the presence of a (4×4) structure and the herringbone surface reconstruction, respectively. Upon potential increase, phosphate anions adsorb on both surfaces and for Cu(111) the formation of a (√3×√3)R30° structure is found, whereas on Au(111) a "(√3×√7)" structure is formed.
For a Cu-submonolayer on Au(111), coadsorption of phosphate anions leads to the formation of a (2×2) vacancy structure within an assumed pseudomorphic structure of the Cu-submonolayer with the phosphate anions occupying the vacancies. When desorbing the phosphate anions at low potentials, the Cu-submonolayer first becomes mobile and eventually undergoes an irreversible transition to a coalescent nonpseudomorphic structure.
For a Cu-submonolayer on Au(111), coadsorption of phosphate anions leads to the formation of a (2×2) vacancy structure within an assumed pseudomorphic structure of the Cu-submonolayer with the phosphate anions occupying the vacancies. When desorbing the phosphate anions at low potentials, the Cu-submonolayer first becomes mobile and eventually undergoes an irreversible transition to a coalescent nonpseudomorphic structure.
Original language | English |
---|---|
Journal | Surface Science |
Volume | 608 |
Pages (from-to) | 44-54 |
ISSN | 0039-6028 |
DOIs | |
Publication status | Published - 2013 |
Keywords
- Scanning tunneling microscopy
- Electrochemical phenomena
- Catalysis
- Copper
- Phosphate
- Carbon dioxide