In Situ Analysis of the Li-O2 Battery with Thermally Reduced Graphene Oxide Cathode: Influence of Water Addition

Mie Møller Storm, Mathias Kjærgård Christensen, Reza Younesi, Poul Norby

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

The Li-O2 battery technology holds the promise to deliver a battery with significantly increased specific energy compared to today's Li-ion batteries. As a cathode support material, reduced graphene oxide has received increasing attention in the Li-O2 battery community due to the possibility of increased discharge capacity, increased battery cyclability, and decreased, charging, overpotential. In this. article we investigate the effect of water on a thermally, redircedigraphene, oxide cathode in a Li-O2 battery. Differential electrochemical mass spectrciscnieveals a, decreased electron count for batteries with 1000 ppm water added- to the electrolyte in comparison to dry batteries, indicating additional parasitic electrochemical or chemical processes. A comparable capacity of the wet and dry batteries indicates that the reaction mechanism in the Li-O2 battery also depends on the 'surface-of-the cathode and not only on addition of water to the electrolyte as demonstrated by the solution-based mechanism In situ synchrotron X-ray diffraction experiment using a new design of a capillary-based Li-O2 cell with a thermally reduced graphene oxide cathode shows formation of LiOH along with Li2O2.
Original languageEnglish
JournalJournal of Physical Chemistry C
Volume120
Issue number38
Pages (from-to)21211-21217
Number of pages7
ISSN1932-7447
DOIs
Publication statusPublished - 2016

Fingerprint

Dive into the research topics of 'In Situ Analysis of the Li-O2 Battery with Thermally Reduced Graphene Oxide Cathode: Influence of Water Addition'. Together they form a unique fingerprint.

Cite this