In search for a canonical design ABL stability class for wind farm turbines

Production as well as loading of wake exposed wind turbines is known to depend significantly on stability of the Atmospheric Boundary Layer (ABL), which adds a new dimension to design of wind farm turbines. Adding this new aspect in wind turbine design makes the number of design cycle computations to blow up with a factor equal to the number of representative stability bin classes. The research question to be answered in this paper is: Can an ABL stability probability distribution in a meaningful way be collapsed into a representative design stability class as based on a (predefined) confidence level.

General information
Publication status: Published
Organisations: Department of Wind Energy, Wind turbine loads & control, Aerodynamic design, Resource Assessment Modelling, University of Agder
Contributors: Larsen, G. C., Verelst, D. R., Bertagnolio, F., Ott, S., Chougule, A. S.
Number of pages: 10
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Journal of Physics: Conference Series (Online)
Volume: 753
Issue number: 3
Article number: 032015
ISSN (Print): 1742-6596
Ratings:
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 0.45 SJR 0.24 SNIP 0.401
Web of Science (2016): Indexed yes
Original language: English
Electronic versions:
In_search_for_a_canonical_design_ABL_stability_class_for_wind_farm_turbines.pdf
DOIs:
10.1088/1742-6596/753/3/032015

Bibliographical note
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Source: FindIt
Source ID: 2346307526
Research output: Contribution to journal › Conference article – Annual report year: 2016 › Research › peer-review