TY - JOUR
T1 - In-Flight spacecraft magnetic field monitoring using scalar/vector gradiometry
AU - Primdahl, Fritz
AU - Risbo, Torben
AU - Merayo, José M.G.
AU - Tøffner-Clausen, Lars
PY - 2006
Y1 - 2006
N2 - Earth magnetic field mapping from planetary orbiting satellites requires a spacecraft magnetic field environment control program combined with the deployment of the magnetic sensors on a boom in order to reduce the measurement error caused by the local spacecraft field. Magnetic mapping missions (Magsat, Oersted, CHAMP, SAC-C MMP and the planned ESA Swarm project) carry a vector magnetometer and an absolute scalar magnetometer for in-flight calibration of the vector magnetometer scale values and for monitoring of the inter-axes angles and offsets over time intervals from months to years. This is done by comparing the two magnetometer outputs for several days and for as many different external field directions and amplitudes in the satellite frame as available. The vector and the scalar sensor may be placed of the order of 2m apart and at the end of an about 10m long boom counted from the spacecraft centre-of-gravity. In line with the classical dual vector sensors technique for monitoring the spacecraft magnetic field, this paper proposes and demonstrates that a similar combined scalar/vector gradiometry technique is feasible by using the measurements from the boom-mounted scalar and vector sensors onboard the Oersted satellite. For Oersted, a large difference between the pre-flight determined spacecraft magnetic field and the in-flight estimate exists causing some concern about the general applicability of the dual sensors technique.
AB - Earth magnetic field mapping from planetary orbiting satellites requires a spacecraft magnetic field environment control program combined with the deployment of the magnetic sensors on a boom in order to reduce the measurement error caused by the local spacecraft field. Magnetic mapping missions (Magsat, Oersted, CHAMP, SAC-C MMP and the planned ESA Swarm project) carry a vector magnetometer and an absolute scalar magnetometer for in-flight calibration of the vector magnetometer scale values and for monitoring of the inter-axes angles and offsets over time intervals from months to years. This is done by comparing the two magnetometer outputs for several days and for as many different external field directions and amplitudes in the satellite frame as available. The vector and the scalar sensor may be placed of the order of 2m apart and at the end of an about 10m long boom counted from the spacecraft centre-of-gravity. In line with the classical dual vector sensors technique for monitoring the spacecraft magnetic field, this paper proposes and demonstrates that a similar combined scalar/vector gradiometry technique is feasible by using the measurements from the boom-mounted scalar and vector sensors onboard the Oersted satellite. For Oersted, a large difference between the pre-flight determined spacecraft magnetic field and the in-flight estimate exists causing some concern about the general applicability of the dual sensors technique.
M3 - Journal article
SN - 0957-0233
VL - 17
SP - 1563
EP - 1569
JO - Measurement Science and Technology
JF - Measurement Science and Technology
ER -