Improving denitrification in an aquaculture wetland using fish waste - a case study

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

Cost-efficient, end-of-pipe, nitrate removal techniques are called for by the commercial aquaculture industry. This case study examined how simple flow manipulations improved the denitrification performance of a 19,007 m2 (13,305 m3) constructed, free water surface (FWS) wetland treating aquaculture effluent. The wetland consisted of two separate streams with a common outlet: one stream treating nitrate-rich but carbon deficient effluent from the production unit at a hydraulic retention time (HRT) of 1.5 days (wetland stream 1); and a second stream treating carbon-rich, fish sludge-based effluent at a HRT of 41.0 days (wetland stream 2). During the course of the study (May–July 2017), three increasing proportions (40, 49 and 56%) of nitrate-rich effluent were re-directed from wetland stream 1 to the sludge-fed wetland stream 2 aiming at improving heterotrophic denitrification conditions in wetland stream 2 and consequently nitrogen removal in the wetland as a whole. Inlet C/N ratio in wetland stream 2 decreased from 1086 ± 57 to an average of 234 ± 56 (p < .05), and the area-based, total nitrogen (TN) removal rate in this wetland section increased significantly from 0.1 ± 0.01 to 8.4 ± 1.4 g/m2/d at the highest manipulated flow. In comparison, the flow manipulations had no effect on TN removal rates in wetland stream 1 averaging 1.4 ± 0.2 g/m2/d throughout the study. For the wetland as a whole, the TN removal rate increased from 1.4 ± 0.2 to 3.9 ± 0.8 g TN/m2/d. The flow manipulations furthermore improved the removal rates of total phosphorous and dissolved organic matter in the wetland as a whole. The study demonstrates that denitrification in a constructed aquaculture wetland may be improved by combining sludge-based and nitrogen-rich effluents in right proportions and leading it through an anoxic section of the wetland.
Original languageEnglish
Article number105686
JournalEcological Engineering
Volume143
ISSN0925-8574
DOIs
Publication statusPublished - 2020

Keywords

  • Organic matter
  • Nitrate
  • Constructed wetland

Cite this

@article{bd1c2f8cf68e46ef8d92140887d83052,
title = "Improving denitrification in an aquaculture wetland using fish waste - a case study",
abstract = "Cost-efficient, end-of-pipe, nitrate removal techniques are called for by the commercial aquaculture industry. This case study examined how simple flow manipulations improved the denitrification performance of a 19,007 m2 (13,305 m3) constructed, free water surface (FWS) wetland treating aquaculture effluent. The wetland consisted of two separate streams with a common outlet: one stream treating nitrate-rich but carbon deficient effluent from the production unit at a hydraulic retention time (HRT) of 1.5 days (wetland stream 1); and a second stream treating carbon-rich, fish sludge-based effluent at a HRT of 41.0 days (wetland stream 2). During the course of the study (May–July 2017), three increasing proportions (40, 49 and 56{\%}) of nitrate-rich effluent were re-directed from wetland stream 1 to the sludge-fed wetland stream 2 aiming at improving heterotrophic denitrification conditions in wetland stream 2 and consequently nitrogen removal in the wetland as a whole. Inlet C/N ratio in wetland stream 2 decreased from 1086 ± 57 to an average of 234 ± 56 (p < .05), and the area-based, total nitrogen (TN) removal rate in this wetland section increased significantly from 0.1 ± 0.01 to 8.4 ± 1.4 g/m2/d at the highest manipulated flow. In comparison, the flow manipulations had no effect on TN removal rates in wetland stream 1 averaging 1.4 ± 0.2 g/m2/d throughout the study. For the wetland as a whole, the TN removal rate increased from 1.4 ± 0.2 to 3.9 ± 0.8 g TN/m2/d. The flow manipulations furthermore improved the removal rates of total phosphorous and dissolved organic matter in the wetland as a whole. The study demonstrates that denitrification in a constructed aquaculture wetland may be improved by combining sludge-based and nitrogen-rich effluents in right proportions and leading it through an anoxic section of the wetland.",
keywords = "Organic matter, Nitrate, Constructed wetland",
author = "{von Ahnen}, Mathis and Pedersen, {Per Bovbjerg} and Johanne Dalsgaard",
year = "2020",
doi = "10.1016/j.ecoleng.2019.105686",
language = "English",
volume = "143",
journal = "Ecological Engineering",
issn = "0925-8574",
publisher = "Elsevier",

}

Improving denitrification in an aquaculture wetland using fish waste - a case study. / von Ahnen, Mathis; Pedersen, Per Bovbjerg; Dalsgaard, Johanne.

In: Ecological Engineering, Vol. 143, 105686, 2020.

Research output: Contribution to journalJournal articleResearchpeer-review

TY - JOUR

T1 - Improving denitrification in an aquaculture wetland using fish waste - a case study

AU - von Ahnen, Mathis

AU - Pedersen, Per Bovbjerg

AU - Dalsgaard, Johanne

PY - 2020

Y1 - 2020

N2 - Cost-efficient, end-of-pipe, nitrate removal techniques are called for by the commercial aquaculture industry. This case study examined how simple flow manipulations improved the denitrification performance of a 19,007 m2 (13,305 m3) constructed, free water surface (FWS) wetland treating aquaculture effluent. The wetland consisted of two separate streams with a common outlet: one stream treating nitrate-rich but carbon deficient effluent from the production unit at a hydraulic retention time (HRT) of 1.5 days (wetland stream 1); and a second stream treating carbon-rich, fish sludge-based effluent at a HRT of 41.0 days (wetland stream 2). During the course of the study (May–July 2017), three increasing proportions (40, 49 and 56%) of nitrate-rich effluent were re-directed from wetland stream 1 to the sludge-fed wetland stream 2 aiming at improving heterotrophic denitrification conditions in wetland stream 2 and consequently nitrogen removal in the wetland as a whole. Inlet C/N ratio in wetland stream 2 decreased from 1086 ± 57 to an average of 234 ± 56 (p < .05), and the area-based, total nitrogen (TN) removal rate in this wetland section increased significantly from 0.1 ± 0.01 to 8.4 ± 1.4 g/m2/d at the highest manipulated flow. In comparison, the flow manipulations had no effect on TN removal rates in wetland stream 1 averaging 1.4 ± 0.2 g/m2/d throughout the study. For the wetland as a whole, the TN removal rate increased from 1.4 ± 0.2 to 3.9 ± 0.8 g TN/m2/d. The flow manipulations furthermore improved the removal rates of total phosphorous and dissolved organic matter in the wetland as a whole. The study demonstrates that denitrification in a constructed aquaculture wetland may be improved by combining sludge-based and nitrogen-rich effluents in right proportions and leading it through an anoxic section of the wetland.

AB - Cost-efficient, end-of-pipe, nitrate removal techniques are called for by the commercial aquaculture industry. This case study examined how simple flow manipulations improved the denitrification performance of a 19,007 m2 (13,305 m3) constructed, free water surface (FWS) wetland treating aquaculture effluent. The wetland consisted of two separate streams with a common outlet: one stream treating nitrate-rich but carbon deficient effluent from the production unit at a hydraulic retention time (HRT) of 1.5 days (wetland stream 1); and a second stream treating carbon-rich, fish sludge-based effluent at a HRT of 41.0 days (wetland stream 2). During the course of the study (May–July 2017), three increasing proportions (40, 49 and 56%) of nitrate-rich effluent were re-directed from wetland stream 1 to the sludge-fed wetland stream 2 aiming at improving heterotrophic denitrification conditions in wetland stream 2 and consequently nitrogen removal in the wetland as a whole. Inlet C/N ratio in wetland stream 2 decreased from 1086 ± 57 to an average of 234 ± 56 (p < .05), and the area-based, total nitrogen (TN) removal rate in this wetland section increased significantly from 0.1 ± 0.01 to 8.4 ± 1.4 g/m2/d at the highest manipulated flow. In comparison, the flow manipulations had no effect on TN removal rates in wetland stream 1 averaging 1.4 ± 0.2 g/m2/d throughout the study. For the wetland as a whole, the TN removal rate increased from 1.4 ± 0.2 to 3.9 ± 0.8 g TN/m2/d. The flow manipulations furthermore improved the removal rates of total phosphorous and dissolved organic matter in the wetland as a whole. The study demonstrates that denitrification in a constructed aquaculture wetland may be improved by combining sludge-based and nitrogen-rich effluents in right proportions and leading it through an anoxic section of the wetland.

KW - Organic matter

KW - Nitrate

KW - Constructed wetland

U2 - 10.1016/j.ecoleng.2019.105686

DO - 10.1016/j.ecoleng.2019.105686

M3 - Journal article

VL - 143

JO - Ecological Engineering

JF - Ecological Engineering

SN - 0925-8574

M1 - 105686

ER -