Improvement of a near wake model for trailing vorticity

Georg Pirrung, Morten Hartvig Hansen, Helge Aagaard Madsen

    Research output: Contribution to journalConference articleResearchpeer-review

    506 Downloads (Orbit)

    Abstract

    A near wake model, originally proposed by Beddoes, is further developed. The purpose of the model is to account for the radially dependent time constants of the fast aerodynamic response and to provide a tip loss correction. It is based on lifting line theory and models the downwash due to roughly the first 90 degrees of rotation. This restriction of the model to the near wake allows for using a computationally efficient indicial function algorithm. The aim of this study is to improve the accuracy of the downwash close to the root and tip of the blade and to decrease the sensitivity of the model to temporal discretization, both regarding numerical stability and quality of the results. The modified near wake model is coupled to an aerodynamics model, which consists of a blade element momentum model with dynamic inflow for the far wake and a 2D shed vorticity model that simulates the unsteady buildup of both lift and circulation in the attached flow region. The near wake model is validated against the test case of a finite wing with constant elliptical bound circulation. An unsteady simulation of the NREL 5 MW rotor shows the functionality of the coupled model.
    Original languageEnglish
    Article number012083
    Book seriesJournal of Physics: Conference Series (Online)
    Volume555
    Number of pages10
    ISSN1742-6596
    DOIs
    Publication statusPublished - 2014
    EventThe science of Making Torque from Wind 2012: 4th scientific conference - Universität Oldenburg, Oldenburg, Germany
    Duration: 9 Oct 201211 Oct 2012
    http://www.forwind.de/makingtorque/Home.html

    Conference

    ConferenceThe science of Making Torque from Wind 2012
    LocationUniversität Oldenburg
    Country/TerritoryGermany
    CityOldenburg
    Period09/10/201211/10/2012
    Internet address

    Bibliographical note

    Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd

    Fingerprint

    Dive into the research topics of 'Improvement of a near wake model for trailing vorticity'. Together they form a unique fingerprint.

    Cite this