Improved Targeting of Cancers with Nanotherapeutics

Targeted cancer nanotherapeutics offers numerous opportunities for the selective uptake of toxic chemotherapies within tumors and cancer cells. The unique properties of nanoparticles, such as their small size, large surface-to-volume ratios, and the ability to achieve multivalency of targeting ligands on their surface, provide superior advantages for nanoparticle-based drug delivery to a variety of cancers. This review highlights various key concepts in the design of targeted nanotherapeutics for cancer therapy, and discusses physicochemical parameters affecting nanoparticle targeting, along with recent developments for cancer-targeted nanomedicines.

General information
Publication status: Published
Organisations: Department of Micro- and Nanotechnology, BioLabChip, Colloids and Biological Interfaces, Ligandal Inc.
Contributors: Foster, C., Watson, A., Kaplinsky, J. J., Kamaly, N.
Number of pages: 2
Pages: 13-37
Publication date: 2017

Host publication information
Title of host publication: Cancer nanotechnology: Methods and Protocols
Volume: 1530
Publisher: Springer
Editor: Zeineldin, R.
ISBN (Print): 978-1-4939-6644-8
(Methods in Molecular Biology).
Keywords: Targeting, Antibodies, Ligands, EPR, Cancer, Oncology, Nanoparticles, Nanotherapeutics, Nanomedicine, Multivalency, Drug delivery, Translation
DOIs:
10.1007/978-1-4939-6646-2_2
Source: PublicationPreSubmission
Source ID: 128988398
Research output: Chapter in Book/Report/Conference proceeding › Book chapter – Annual report year: 2017 › Research › peer-review