Abstract
The ESA CryoSat mission is the first space mission to carry a radar altimeter that can operate in Synthetic Aperture Radar (SAR) mode. It thus provides the first opportunity to test and evaluate, using real data, the significant potential benefits of SAR altimetry for ocean applications.
The objective of the CryoSat Plus for Oceans (CP4O) project was to develop and evaluate new ocean products from CryoSat data and so maximize the scientific return of CryoSat over oceans. The main focus of CP4O has been on the additional measurement capabilities that are offered by the SAR mode of the SIRAL altimeter, with further work in developing improved geophysical corrections.
CP4O has developed SAR based ocean products for application in four themes: Open Oceans, Coastal Oceans, Polar Oceans and Sea Floor Topography. The team has developed a number of new processing schemes and compared and evaluated the resultant data products. This work has clearly demonstrated the improved ocean measuring capability offered by SAR mode altimetry and has also added significantly to our understanding of the issues around the processing and interpretation of SAR altimeter echoes.
This paper presents an overview of the major results and outlines a proposed roadmap for the further development and exploitation of these results in operational and scientific applications, with particular focus on their relevance for Sentinel-3.
The “CryoSat Plus for Oceans” (CP4O) project has been supported by ESA (Support To Science Element) and CNES.
The objective of the CryoSat Plus for Oceans (CP4O) project was to develop and evaluate new ocean products from CryoSat data and so maximize the scientific return of CryoSat over oceans. The main focus of CP4O has been on the additional measurement capabilities that are offered by the SAR mode of the SIRAL altimeter, with further work in developing improved geophysical corrections.
CP4O has developed SAR based ocean products for application in four themes: Open Oceans, Coastal Oceans, Polar Oceans and Sea Floor Topography. The team has developed a number of new processing schemes and compared and evaluated the resultant data products. This work has clearly demonstrated the improved ocean measuring capability offered by SAR mode altimetry and has also added significantly to our understanding of the issues around the processing and interpretation of SAR altimeter echoes.
This paper presents an overview of the major results and outlines a proposed roadmap for the further development and exploitation of these results in operational and scientific applications, with particular focus on their relevance for Sentinel-3.
The “CryoSat Plus for Oceans” (CP4O) project has been supported by ESA (Support To Science Element) and CNES.
Original language | English |
---|---|
Publication date | 2016 |
Number of pages | 1 |
Publication status | Published - 2016 |
Event | ESA Living Planet Symposium 2016 - Prague, Czech Republic Duration: 9 May 2016 → 13 May 2016 http://lps16.esa.int/ |
Conference
Conference | ESA Living Planet Symposium 2016 |
---|---|
Country | Czech Republic |
City | Prague |
Period | 09/05/2016 → 13/05/2016 |
Internet address |