Improved methods for predicting peptide binding affinity to MHC class II molecules

Major histocompatibility complex class II (MHC-II) molecules are expressed on the surface of professional antigen presenting cells where they display peptides to T helper cells, which orchestrate the onset and outcome of many host immune responses. Understanding which peptides will be presented by the MHC-II molecule is therefore important for understanding the activation of T helper cells and can be used to identify T-cell epitopes. We here present updated versions of two MHC class II peptide binding affinity prediction methods, NetMHCII and NetMHCIIpan. These were constructed using an extended data set of quantitative MHC-peptide binding affinity data obtained from the Immune Epitope Database covering HLA-DR, HLA-DQ, HLA-DP and H-2 mouse molecules. We show that training with this extended data set improved the performance for peptide binding predictions for both methods. Both methods are publicly available at www.cbs.dtu.dk/services/NetMHCII-2.3 and www.cbs.dtu.dk/services/NetMHCIIpan-3.2. This article is protected by copyright. All rights reserved.

General information
Publication status: Published
Organisations: Department of Bio and Health Informatics, Immunoinformatics and Machine Learning, Universidad Nacional de San Martin, University of Copenhagen, La Jolla Institute for Allergy & Immunology
Corresponding author: Nielsen, M.
Contributors: Jensen, K. K., Andreatta, M., Marcatili, P., Buus, S., Greenbaum, J. A., Yan, Z., Sette, A., Peters, B., Nielsen, M.
Pages: 394-406
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Immunology
Volume: 154
Issue number: 3
ISSN (Print): 0019-2805
Ratings:
BFI (2018): BFI-level 1
Scopus rating (2018): CiteScore 3.99 SJR 1.607 SNIP 0.986
Web of Science (2018): Impact factor 4.147
Web of Science (2018): Indexed yes
Original language: English
Keywords: MHC binding specificity, T-cell epitope, Affinity predictions, Immunogenic peptides, Peptide-MHC binding
Electronic versions:
Jensen_et_al_2018_Immunology.pdf. Embargo ended: 07/01/2019
DOIs:
10.1111/imm.12889
Source: FindIt
Source ID: 2395320988
Research output: Contribution to journal › Journal article – Annual report year: 2018 › Research › peer-review