Improved Culture Medium (TiKa) for Mycobacterium avium Subspecies Paratuberculosis (MAP) Matches qPCR Sensitivity and Reveals Significant Proportions of Non-viable MAP in Lymphoid Tissue of Vaccinated MAP Challenged Animals

Tim J. Bull, Tulika Munshil, Heidi Mikkelsen Melvang, Sofie Bruun Hartmann, Maria Rathmann Sørensen, Joanna S. Garcia, Paula M. Lopez-Perez, Sven Hofmann, Kai Hapert, Gregers Jungersen

    Research output: Contribution to journalJournal articleResearchpeer-review

    280 Downloads (Pure)

    Abstract

    The quantitative detection of viable pathogen load is an important tool in determining the degree of infection in animals and contamination of foodstuffs. Current conventional culture methods are limited in their ability to determine these levels in Mycobacterium avium subspecies paratuberculosis (MAP) due to slow growth, clumping and low recoverability issues. The principle goal of this study was to evaluate a novel culturing process (TiKa) with unique ability to stimulate MAP growth from low sample loads and dilutions. We demonstrate it was able to stimulate a mean 29-fold increase in recoverability and an improved sensitivity of up to three logs when compared with conventional culture. Using TiKa culture, MAP clumping was minimal and produced visible colonies in half the time required by standard culture methods. Parallel quantitative evaluation of the TiKa culture approach and qPCR on MAP loads in tissue and gut mucosal samples from a MAP vaccine-challenge study, showed good correlations between colony counts (cfu) and qPCR derived genome equivalents (Geq) over a large range of loads with a 30% greater sensitivity for TiKa culture approach at low loads (two logs). Furthermore, the relative fold changes in Geq and cfu from the TiKa culture approach suggests that non-mucosal tissue loads from MAP infected animals contained a reduced proportion of non-viable MAP (mean 19-fold) which was reduced significantly further (mean 190-fold) in vaccinated "reactor" calves. This study shows TiKa culture equates well with qPCR and provides important evidence that accuracy in estimating viable MAP load using DNA tests alone may vary significantly between samples of mucosal and lymphatic origin.
    Original languageEnglish
    Article number2112
    JournalFrontiers in Microbiology
    Volume7
    Number of pages8
    ISSN1664-302X
    DOIs
    Publication statusPublished - 2017

    Keywords

    • Mycobacterium avium subspecies paratuberculosis
    • improved culture
    • quantification
    • qPCR
    • TiKa culture

    Cite this