TY - JOUR
T1 - Impact of storage duration and micro-aerobic conditions on lactic acid production from food waste
AU - Zhang, Zengshuai
AU - Tsapekos, Panagiotis
AU - Alvarado-Morales, Merlin
AU - Angelidaki, Irini
PY - 2021
Y1 - 2021
N2 - Food waste (FW) is an abundant resource with great potential for lactic acid (LA) production. In the present study, the effect of storage time on FW characteristics and its potential for LA production was investigated. The largest part of sugars was consumed during 7 to 15 days of FW storage and the sugar consumption reached 68.0% after 15 days. To enhance the LA production, micro-aerobic conditions (13 mL air/g VS) and addition of β-glucosidase were applied to improve polysaccharides hydrolysis, resulting to increase of monosaccharides content to 76.6%. Regarding fermentative LA production, the highest LA titer and yield of hydrolyzed FW was 32.1 ± 0.5 g/L and 0.76 ± 0.01 g/g-sugar, respectively. Furthermore, L-LA isomer was higher than 70% when FW was stored for up to 7 days. However, attention should be paid on controlling the FW storage to approximately one week.
AB - Food waste (FW) is an abundant resource with great potential for lactic acid (LA) production. In the present study, the effect of storage time on FW characteristics and its potential for LA production was investigated. The largest part of sugars was consumed during 7 to 15 days of FW storage and the sugar consumption reached 68.0% after 15 days. To enhance the LA production, micro-aerobic conditions (13 mL air/g VS) and addition of β-glucosidase were applied to improve polysaccharides hydrolysis, resulting to increase of monosaccharides content to 76.6%. Regarding fermentative LA production, the highest LA titer and yield of hydrolyzed FW was 32.1 ± 0.5 g/L and 0.76 ± 0.01 g/g-sugar, respectively. Furthermore, L-LA isomer was higher than 70% when FW was stored for up to 7 days. However, attention should be paid on controlling the FW storage to approximately one week.
U2 - 10.1016/j.biortech.2020.124618
DO - 10.1016/j.biortech.2020.124618
M3 - Journal article
C2 - 33406468
SN - 0960-8524
VL - 323
JO - Bioresource Technology
JF - Bioresource Technology
M1 - 124618
ER -