Impact of North Korean nuclear weapons test on 3 September, 2017 on inland China traced by 14C and 129I

Environmental impact of North Korea nuclear weapons testing on 3 Sept, 2017, is of key concern. In order to investigate whether there is radioactive leakage and whether it can be transported to inland China, 14C and 129I are determined in aerosol samples collected in a Chinese inland city before and after the test. Aerosol Δ^{14}C values before and after the test do not show any significant difference. In contrast, a four-fold increase of 129I/127I ratios was found after the test. The possible sources of 129I in these atmospheric samples and the impact of the North Korea nuclear test are discussed.

General information
Publication status: Published
Organisations: Center for Nuclear Technologies, The Hevesy Laboratory, Radioecology and Tracer Studies, Chinese Academy of Sciences
Corresponding author: Hou, X.
Pages: 383-388
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Journal of Radioanalytical and Nuclear Chemistry
Volume: 316
Issue number: 1
ISSN (Print): 0236-5731
Ratings:
BFI (2018): BFI-level 1
Scopus rating (2018): CiteScore 1.18 SJR 0.408 SNIP 0.69
Web of Science (2018): Impact factor 1.186
Web of Science (2018): Indexed yes
Original language: English
Keywords: North Korea underground nuclear weapons test, 14C, 129I, Environmental impact, Aerosol
Electronic versions:
Manuscript_nuclear_tests_by_North_Korea_English_F.pdf
DOI:
10.1007/s10967-018-5747-y
Source: FindIt
Source ID: 2396530466
Research output: Contribution to journal › Journal article – Annual report year: 2018 › Research › peer-review