Impact of He and Cr on defect accumulation in ion-irradiated ultrahigh-purity Fe(Cr) alloys

A. Prokhodtseva, B. Décamps, Amuthan Ramar, R. Schäublin

    Research output: Contribution to journalJournal articleResearchpeer-review

    Abstract

    The effect of He on the primary damage induced by irradiation in ultrahigh-purity (UHP) Fe and Fe(Cr) alloys was investigated by transmission electron microscopy (TEM). Materials were irradiated at room temperature in situ by TEM in a microscope coupled to two ion accelerators, simultaneously providing 500keV Fe+ and 10keV He+ ions. Single Fe ion and dual Fe and He ion beam experiments were performed up to a dose of 1dpa and to a He content of up to 1000appm. Defects appear in the form of nanometric black dots with sizes between 1 and 5nm. Defocused images reveal a dense population of sub-nanometric cavities after both single-beam and dual-beam irradiation. In Fe(Cr) alloys, the number densities of visible black dot defects still resolved in TEM are significantly higher after single than after dual-beam irradiation. In UHP Fe, conversely, the presence of He strongly increases the defect number density. The presence of He changes a a0〈100〉 dominated defect population to a 1/2a0〈111〉 dominated one in all materials, and the more so in UHP Fe. It appears that Cr increases the number of visible defects relative to UHP Fe. The dependence with increasing Cr content is weak, however, showing only a slight decrease in the number densities. The decrease in the density of visible a0〈100〉 loops and increase in the visible 1/2a0〈111〉 loops in all materials when He is present supports the idea that visible a0〈100〉 loops are formed by the interaction between mobile 1/2a0〈111〉 loops, as the latter would be immobilized by He already at sub-microscopic sizes. It is concluded that the primary loop population is dominated by 1/2a0〈111〉 loops.
    Original languageEnglish
    JournalActa Materialia
    Volume61
    Issue number18
    Pages (from-to)6958-6971
    ISSN1359-6454
    DOIs
    Publication statusPublished - 2013

    Keywords

    • Radiation damage
    • In situ transmission electron microscopy irradiation
    • Fe(Cr) alloys

    Cite this