Abstract
Understanding the impact of the cladding tube structure on the overall guiding performance is crucial for designing a single-mode, wide-band, and ultra low-loss nested hollowcore anti-resonant fiber (HC-ARF). Here we thoroughly investigate on how the propagation loss is affected by the nested elements when their geometry is realistic (i.e., non-ideal). Interestingly, it was found that the size, rather than the shape, of the nested elements has a dominant role in the final loss performance of the regular nested HC-ARFs. We identify a unique 'V-shape' pattern for suppression of higher-order modes loss by optimizing free design parameters of the HC-ARF. We find that a 5-tube nested HC-ARF has wider transmission window and better single-mode operation than a 6-tube HC-ARF.We show that the propagation loss can be significantly improved by using anisotropic nested anti-resonant tubes elongated in the radial direction. Our simulations indicate that with this novel fiber design, a propagation loss as low as 0.11 dB/km at 1.55 μm can be achieved. Our results provide design insight toward fully exploiting a single-mode, wide-band, and ultra low-loss HC-ARF. In addition, the extraordinary optical properties of the proposed fiber can be beneficial for several applications such as future optical communication system, high energy light transport, extreme non-nonlinear optics and beyond.
Original language | English |
---|---|
Journal | Optics Express |
Volume | 29 |
Issue number | 3 |
Pages (from-to) | 3359-3374 |
ISSN | 1094-4087 |
DOIs | |
Publication status | Published - 1 Feb 2021 |