Impact mechanics of ship collisions and validations with experimental results - DTU Orbit
(25/07/2019)

Impact mechanics of ship collisions and validations with experimental results
Closed-form analytical solutions for the energy released for deforming and crushing of structures and the impact impulse during ship collisions were developed and published in Marine Structures in 1998 [1]. The proposed mathematical models have been used by many engineers and researchers although the methods were only validated with timedomain numerical simulation results at that time. Since then, model and full-scale measurements have been carried out and experimental results are available in the public domain. The purpose of the present paper is to use such experimental results to further analyze the validity and robustness of the closed-form analytical methods as well as to further improve some parameters' accuracy. In total, 60 experimental results have been analyzed and compared with the analytical results and this paper presents the outcome. It can be concluded that the analytical methods give a reasonable agreement with the experimental results. The paper also introduces a simple concept to account for the effective mass of liquids with free surface carried on board of a ship and it is shown how the analytical analysis procedure can be expanded to take into account the effect of ship roll on the energy released for crushing.

General information
Publication status: Published
Organisations: Department of Mechanical Engineering, Fluid Mechanics, Coastal and Maritime Engineering, Lloyd's Register EMEA, Wuhan University
Contributors: Zhang, S., Villavicencio, R., Zhu, L., Pedersen, P. T.
Pages: 69-81
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Marine Structures
Volume: 52
ISSN (Print): 0951-8339
Ratings:
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.35 SJR 2.049 SNIP 2.949
Web of Science (2017): Impact factor 2.491
Web of Science (2017): Indexed yes
Original language: English
Keywords: Ship collision, Collision energy, Closed-form solution, Added mass coefficient, Effective mass for liquid, Experimental result
DOIs:
10.1016/j.marstruc.2016.12.003
Source: FindIt
Source-ID: 2349738176
Research output: Contribution to journal › Journal article – Annual report year: 2016 › Research › peer-review