Imbalance Current Analysis and Its Suppression Methodology for Parallel SiC MOSFETs With Aid of a Differential Mode Choke

Zheng Zeng, Xin Zhang*, Zhe Zhang

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

407 Downloads (Pure)

Abstract

Parallel connection of SiC MOSFETs is a cost-effective solution for high-capacity power converters. However, transient imbalance current, during turn-on and -off processes, challenges the safety and stability of parallel SiC MOSFETs. In this paper, considering the impact factors of device parameters, circuit parasitics, and junction temperatures, in-depth mathematical models are created to reveal the electro-thermal-mechanisms of the imbalance current. Moreover, with the incorporation of a differential mode choke (DMC), an effective approach is proposed to suppress the imbalance current among parallel SiC MOSFETs. Physic concepts, operation principles, and design guidelines of the DMC suppression method are fully presented. Besides, to reduce the equivalent leakage inductance and equivalent parallel capacitance of the DMC, winding patterns of the DMC are comparatively studied and optimized to suppress turn-off over-voltage and switching ringing. Concerning the influence of winding patterns, load currents, gate resistances, and junction temperatures, experimental results are comprehensively demonstrated to confirm the validity of theoretical models and the function of the proposed DMC suppression method. It is turned out the low-cost DMC is easy to design and utilize without complex feedback circuits or control schemes, which is a cost-effective component to guarantee consistent and synchronous on-off trajectories of parallel SiC MOSFETs.
Original languageEnglish
JournalIEEE Transactions on Industrial Electronics
Volume67
Issue number2
Pages (from-to)1508-1519
Number of pages11
ISSN0278-0046
DOIs
Publication statusPublished - 2020

Keywords

  • Parallel SiC MOSFETs
  • Mechanism of imbalance current
  • Consistency and synchronization of on-off trajectories
  • Differential mode choke

Fingerprint Dive into the research topics of 'Imbalance Current Analysis and Its Suppression Methodology for Parallel SiC MOSFETs With Aid of a Differential Mode Choke'. Together they form a unique fingerprint.

Cite this