TY - JOUR

T1 - Identifying weak values with intrinsic dynamical properties in modal theories

AU - Pandey, Devashish

AU - Sampaio, Rui

AU - Ala-Nissila, Tapio

AU - Albareda, Guillermo

AU - Oriols, Xavier

N1 - Publisher Copyright:
© 2021 American Physical Society.

PY - 2021/5

Y1 - 2021/5

N2 - The so-called eigenvalue-eigenstate link states that no property can be associated to a quantum system unless it is in an eigenstate of the corresponding operator. This precludes the assignation of properties to unmeasured quantum systems in general. This arbitrary limitation of orthodox quantum mechanics generates many puzzling situations such as for example the impossibility to uniquely define a work distribution, an essential building block of quantum thermodynamics. Alternatively, modal theories (e.g., Bohmian mechanics) provide an ontology that always allows one to define intrinsic properties, i.e., properties of quantum systems that are detached from any possible measuring context. We prove here that Aharonov, Albert, and Vaidman's notion of a weak value can always be identified with an intrinsic dynamical property of a quantum system defined in a certain modal theory. Furthermore, the fact that weak values are experimentally accessible (as an ensemble average of weak measurements which are postselected by a strong measurement) strengthens the idea that understanding the intrinsic (unperturbed) dynamics of quantum systems is possible and useful in a given modal theory. As examples of the physical soundness of these intrinsic properties, we discuss three intrinsic Bohmian properties, viz., the dwell time, the work distribution, and the quantum noise at high frequencies.

AB - The so-called eigenvalue-eigenstate link states that no property can be associated to a quantum system unless it is in an eigenstate of the corresponding operator. This precludes the assignation of properties to unmeasured quantum systems in general. This arbitrary limitation of orthodox quantum mechanics generates many puzzling situations such as for example the impossibility to uniquely define a work distribution, an essential building block of quantum thermodynamics. Alternatively, modal theories (e.g., Bohmian mechanics) provide an ontology that always allows one to define intrinsic properties, i.e., properties of quantum systems that are detached from any possible measuring context. We prove here that Aharonov, Albert, and Vaidman's notion of a weak value can always be identified with an intrinsic dynamical property of a quantum system defined in a certain modal theory. Furthermore, the fact that weak values are experimentally accessible (as an ensemble average of weak measurements which are postselected by a strong measurement) strengthens the idea that understanding the intrinsic (unperturbed) dynamics of quantum systems is possible and useful in a given modal theory. As examples of the physical soundness of these intrinsic properties, we discuss three intrinsic Bohmian properties, viz., the dwell time, the work distribution, and the quantum noise at high frequencies.

U2 - 10.1103/PhysRevA.103.052219

DO - 10.1103/PhysRevA.103.052219

M3 - Journal article

AN - SCOPUS:85107117552

SN - 2469-9926

VL - 103

JO - Physical Review A

JF - Physical Review A

IS - 5

M1 - 052219

ER -