TY - JOUR
T1 - Identifying the key system parameters of the organic Rankine cycle using the principal component analysis based on an experimental database
AU - Yan, Dong
AU - Yang, Fubin
AU - Yang, Fufang
AU - Zhang, Hongguang
AU - Guo, Zhiyu
AU - Li, Jian
AU - Wu, Yuting
PY - 2021
Y1 - 2021
N2 - The organic Rankine cycle (ORC) is a promising technology for medium-and-low temperature heat utilization. However, the mechanism of how system parameters affect output have been investigated very little in the experimental aspect. Experimental investigation on the impact of each system parameter on system performance requires decoupling these system parameters. In this work, a series of experiments are conducted on a 10 kW scale ORC experiment setup. Statistical analysis is performed to identify a key parameter subset based on an experimental database. 6 system parameters, including temperature (Te) and pressure (pe) at the evaporator outlet, temperature (Tc) and pressure (pc) at the condenser inlet, expander shaft efficiency (ηSSE), and working fluid pump efficiency (ηP) are obtained. Combined with the ORC net power output and thermal efficiency, an experimental database of system operation conditions is constructed. Subsequently, the principal component analysis (PCA) of ORC is conducted based on the experimental database. Prediction models are developed using multi-linear regression (MLR), back propagation artificial neural network (BP-ANN), and support vector regression (SVR). Finally, accounting for the prediction performance of models and system parameter inter-correlation behavior, the key parameter subset is determined with the exhaustive feature selection method. The results imply that the key parameter subset is (Pe,ηP,Pc,ηSSE). Further removing or including more system parameters would reduce the accuracy of prediction models. In addition, the MLR models are slightly less accurate than the more sophisticated BP-ANN and SVR models.
AB - The organic Rankine cycle (ORC) is a promising technology for medium-and-low temperature heat utilization. However, the mechanism of how system parameters affect output have been investigated very little in the experimental aspect. Experimental investigation on the impact of each system parameter on system performance requires decoupling these system parameters. In this work, a series of experiments are conducted on a 10 kW scale ORC experiment setup. Statistical analysis is performed to identify a key parameter subset based on an experimental database. 6 system parameters, including temperature (Te) and pressure (pe) at the evaporator outlet, temperature (Tc) and pressure (pc) at the condenser inlet, expander shaft efficiency (ηSSE), and working fluid pump efficiency (ηP) are obtained. Combined with the ORC net power output and thermal efficiency, an experimental database of system operation conditions is constructed. Subsequently, the principal component analysis (PCA) of ORC is conducted based on the experimental database. Prediction models are developed using multi-linear regression (MLR), back propagation artificial neural network (BP-ANN), and support vector regression (SVR). Finally, accounting for the prediction performance of models and system parameter inter-correlation behavior, the key parameter subset is determined with the exhaustive feature selection method. The results imply that the key parameter subset is (Pe,ηP,Pc,ηSSE). Further removing or including more system parameters would reduce the accuracy of prediction models. In addition, the MLR models are slightly less accurate than the more sophisticated BP-ANN and SVR models.
KW - Organic Rankine cycle
KW - Experimental analysis
KW - Principal component analysis
KW - Machine learning
KW - Key parameter subset
U2 - 10.1016/j.enconman.2021.114252
DO - 10.1016/j.enconman.2021.114252
M3 - Journal article
SN - 0196-8904
VL - 240
JO - Energy Conversion and Management
JF - Energy Conversion and Management
M1 - 114252
ER -