Identifying anti-growth factors for human cancer cell lines through genome-scale metabolic modeling

Pouyan Ghaffari, Adil Mardinoglu, Anna Asplund, Saeed Shoaie, Caroline Kampf, Mathias Uhlén, Jens Nielsen

Research output: Contribution to journalJournal articleResearchpeer-review

398 Downloads (Pure)

Abstract

Human cancer cell lines are used as important model systems to study molecular mechanisms associated with tumor growth, hereunder how genomic and biological heterogeneity found in primary tumors affect cellular phenotypes. We reconstructed Genome scale metabolic models (GEMs) for eleven cell lines based on RNA-Seq data and validated the functionality of these models with data from metabolite profiling. We used cell line-specific GEMs to analyze the differences in the metabolism of cancer cell lines, and to explore the heterogeneous expression of the metabolic subsystems. Furthermore, we predicted 85 antimetabolites that can inhibit growth of, or even kill, any of the cell lines, while at the same time not being toxic for 83 different healthy human cell types. 60 of these antimetabolites were found to inhibit growth in all cell lines. Finally, we experimentally validated one of the predicted antimetabolites using two cell lines with different phenotypic origins, and found that it is effective in inhibiting the growth of these cell lines. Using immunohistochemistry, we also showed high or moderate expression levels of proteins targeted by the validated antimetabolite. Identified anti-growth factors for inhibition of cell growth may provide leads for the development of efficient cancer treatment strategies.
Original languageEnglish
Article number8183
JournalScientific Reports
Volume5
Number of pages10
ISSN2045-2322
DOIs
Publication statusPublished - 2015

Bibliographical note

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Fingerprint

Dive into the research topics of 'Identifying anti-growth factors for human cancer cell lines through genome-scale metabolic modeling'. Together they form a unique fingerprint.

Cite this