Identification of damping and complex modes in structural vibrations

A sufficiently accurate mathematical representation of the viscous damping matrix from modal parameters is often limited to structures with light damping or an assumed structure of the damping matrix. These limitations are now circumvented by a novel expression, which reconstructs the damping matrix from the complex-valued eigenvectors and eigenvalues of a non-classically damped structure with an assumed mass distribution. The accuracy of this expression is demonstrated by both numerical simulations and experimental measurements of a model-scale five-story shear building, with damping introduced locally by a single eddy current damper. The spatial distribution of the damping is estimated by integrating the proposed expression for the damping matrix in a covariance driven output-only system identification technique. The reproducibility of the mode shape estimates and their convergence with respect to measurement duration validate the proposed approach and demonstrate that complex modes are achievable from vibration measurements.

General information
Publication status: Published
Organisations: Department of Mechanical Engineering, Solid Mechanics
Corresponding author: Bajrić, A.
Contributors: Bajrić, A., Høgsberg, J. B.
Pages: 367-389
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Journal of Sound and Vibration
Volume: 431
ISSN (Print): 0022-460X
Ratings:
BFI (2018): BFI-level 2
Scopus rating (2018): CiteScore 3.75 SJR 1.279 SNIP 2.044
Web of Science (2018): Impact factor 3.123
Web of Science (2018): Indexed yes
Original language: English
Keywords: Identification of damping, Complex mode shapes, Random vibrations, Output-only system identification, Local damping sources
DOIs:
10.1016/j.jsv.2018.05.048
Source: FindIt
Source-ID: 2435185866
Research output: Contribution to journal › Journal article – Annual report year: 2018 › Research › peer-review