Identification of common bacterial antigenic markers from bovine digital dermatitis lesions using meta-transcriptomics in combination with high-density peptide-microarrays

Bovine digital dermatitis (DD) is the most important infectious cause of lameness in dairy cattle, and a major contributing factor to welfare problems and economic losses in the dairy cattle industry worldwide. DD is a disease that involves chronic dermal inflammatory processes and destruction of collagenous and connective tissues. Multiple Treponema species, many of which are not-yet-cultivable, are strongly implicated in disease progression. Despite the economic and welfare importance of this disease, no effective vaccine is available; and there is presently very little knowledge concerning efficacious immunoprophylactic antigens against DD.

It is highly likely that DD-associated treponemes possess considerable antigenic variation, as cows exhibit a variable humoral response against different isolates of Treponema. Hence, combinations of antigens from multiple Treponema species should be used for the development of disease prevention measures. As treponemes from DD lesions are extremely difficult to culture, identification of these antigens is challenging. To circumvent this problem, we studied the in situ gene expression patterns of the microbiome in DD-affected skin lesions and the host antibody response directed at the site of infection. By metatranscriptomics we measured the in situ genome-wide transcriptome of the bacterial population in DD-affected skin lesions from 21 dairy cows. From the transcriptome data, we identified a panel of Treponema genes that were highly expressed in multiple animals, and we monitored the host immune response to these target genes using high-density peptide microarrays. By this approach, we identified a small group of antigenic proteins, which were expressed in the majority of the samples, and demonstrated antigenicity when screened against sera from infected animal. Future studies will show if these proteins represent candidates for the development of novel biomarkers or vaccines.

General information
Publication status: Published
Organisations: National Veterinary Institute, Section for Bacteriology, Pathology and Parasitology, Center for Biological Sequence Analysis, Department of Bio and Health Informatics, Immunoinformatics and Machine Learning, Metagenomics, Schafer-N, Technical University of Denmark
Number of pages: 1
Publication date: 2016
Peer-reviewed: Yes
Research output: Contribution to conference › Conference abstract for conference – Annual report year: 2016 › Research › peer-review