Identification and Evaluation of Cases for Excess Heat Utilisation Using GIS

Excess heat is present in many sectors, and its utilization could reduce the primary energy use and emission of greenhouse gases. This work presents a geographical mapping of excess heat, in which excess heat from the industry and utility sector was distributed to specific geographical locations in Denmark. Based on this mapping, a systematic approach for identifying cases for the utilization of excess heat is proposed, considering the production of district heat and process heat, as well as power generation. The technical and economic feasibility of this approach was evaluated for six cases. Special focus was placed on the challenges for the connection of excess heat sources to heat users. To account for uncertainties in the model input, different methods were applied to determine the uncertainty of the results and the most important model parameters. The results show how the spatial mapping of excess heat sources can be used to identify their utilization potentials. The identified case studies show that it can be economically feasible to connect the heat sources to the public energy network or to use the heat to generate electricity. The uncertainty analysis suggests that the results are indicative and are particularly useful for a fast evaluation, comparison and prioritization of possible matches. The excess heat temperature and obtainable energy price were identified as the most important input parameters.

General information
Publication status: Published
Organisations: Department of Mechanical Engineering, Thermal Energy, Department of Management Engineering, Systems Analysis, Viegand Maage A/S
Corresponding author: Bühler, F.
Contributors: Bühler, F., Petrovic, S., Ommen, T. S., Holm, F. M., Pieper, H., Elmegaard, B.
Number of pages: 24
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Energies
Volume: 11
Issue number: 4
ISSN (Print): 1996-1073
Ratings:
BFI (2018): BFI-level 2
Scopus rating (2018): CiteScore 3.18 SJR 0.612 SNIP 1.156
Web of Science (2018): Impact factor 2.707
Web of Science (2018): Indexed yes
Original language: English
Keywords: Excess heat, Heat recovery, GIS, Industry, Utility, District heating, Power generation, Energy Efficiency
Electronic versions:
energies_11_00762_v2.pdf
DOIs:
10.3390/en11040762
Research output: Contribution to journal › Journal article – Annual report year: 2018 › Research › peer-review