The effect of demagnetization on the magnetocaloric properties of gadolinium

Gadolinium displays a strong magnetocaloric effect at temperatures close to room temperature making it useful in the field of room temperature magnetic refrigeration. We discuss the importance of including the effects of the demagnetization field when considering the magnetocaloric properties of gadolinium. The adiabatic temperature change ΔT_{ad} of gadolinium sheets upon application of a magnetic field has been measured at a range of applied magnetic fields and sample orientations. A significant dependence of ΔT_{ad} on the sample orientation is observed. This can be accounted for by the demagnetization factor. Also, the temperature dependence of ΔT_{ad} has been measured experimentally and modeled by mean field theory. Corrections to mean field theory modeling due to the demagnetization field are proposed and discussed. ©2009 American Institute of Physics

General information
Publication status: Published
Organisations: Thermo Ceramics, Fuel Cells and Solid State Chemistry Division, Risø National Laboratory for Sustainable Energy, Electroceramics, Manufacturing Engineering, Department of Mechanical Engineering
Contributors: Bahl, C. R. H., Nielsen, K. K.
Pages: 013916
Publication date: 2009
Peer-reviewed: Yes

Publication information
Journal: Journal of Applied Physics
Volume: 105
Issue number: 1
ISSN (Print): 0021-8979
Ratings:
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.51 SNIP 1.25
Web of Science (2009): Indexed yes
Original language: English
Keywords: Magnetic refrigeration, Fuel Cells and hydrogen
Electronic versions:
bahl.pdf
DOIs:
10.1063/1.3056220
URLs:
http://link.aip.org/link/?JAPIAU/105/013916/1

Bibliographical note
Copyright (2009) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.
Source: orbit
Source ID: 233832
Research output: Contribution to journal → Journal article – Annual report year: 2009 → Research → peer-review