Melt compounding of different grades of polystyrene with organoclay. Part 2: Rheological properties

Melt compounding of different grades of polystyrene with organoclay. Part 2: Rheological properties
Polystyrene-based nanocomposites (PNC) were prepared using three grades of polystyrene (different molecular weights). The resin was melt-compounded with 0 to 10 wt% of commercial organoclay in a co-rotating twin-screw extruder. Owing to thermo-oxidative degradation the degree of dispersion was poor. The rheological properties of PNC were determined under dynamic and steady state shear as well as under extensional flow conditions. At the higher clay content, dynamic strain sweep demonstrated that the storage and loss moduli decrease continuously with an increase of strain. To characterize this nonlinear viscoelastic behavior, the Fourier-transform rheology, was applied. The low strain frequency sweep showed that the storage and loss moduli increase with organoclay content. The extracted zero-shear viscosity data were used to calculate the intrinsic viscosity and then the aspect ratio of dispersions. In spite of nonlinear viscoelastic behavior, the time-temperature superposition was observed in the full range of concentration. The horizontal and vertical shift factors were found to be almost independent of organoclay content and molecular weight of PS. For comparison, PNC was also prepared by the solution method. A high degree of dispersion was obtained, reflected in the aspect ratio: $p = 269$, to be compared with $p = 16$ calculated for the melt-compounded.

General information
Publication status: Published
Organisations: Department of Chemical and Biochemical Engineering, The Danish Polymer Centre, University of Fukui, National Research Council of Canada
Pages: 1061-1076
Publication date: 2004
Peer-reviewed: Yes

Publication information
Journal: Polymer Engineering and Science
Volume: 44
Issue number: 6
ISSN (Print): 0032-3888
Ratings:
Scopus rating (2004): SJR 0.899 SNIP 1.136
Web of Science (2004): Indexed yes
Original language: English
DOIs:
10.1002/pen.20099
Source: orbit
Source-ID: 181485
Research output: Contribution to journal › Journal article – Annual report year: 2004 › Research › peer-review