Development of the inner oxide zone upon steam oxidation of an austenitic stainless steel -
DTU Orbit (06/10/2019)

Development of the inner oxide zone upon steam oxidation of an austenitic stainless steel

The oxidation behaviour of TP 347H FG in mixtures of water, oxygen, and hydrogen was investigated in the temperature range 500 – 700°C for a fixed oxidation time of 336 h. The samples were characterised using reflective light and electron microscopy methods. Thin discontinuous double-layered oxide scales developed during oxidation at 500°C, whereas continuous double-layered oxide scales covered the entire sample surface after oxidation at 600 and 700°C. The major part of the scale grew into the former alloy grains, whereas Fe-Cr spinel grew along the former alloy grain boundaries. TEM and EELS investigations revealed that the part of the scale that grows into the alloy grains consists of particles of Fe-Cr spinel embedded in a metallic Fe-Ni matrix, which indicates that this part of the scale grows by an internal oxidation mechanism. Growth of the internal oxidation zone at high humidity (46%) is not significantly affected by the type of carrier gas used.

General information
Publication status: Published
Organisations: Materials and Surface Engineering, Department of Mechanical Engineering, Ørsted A/S
Contributors: Hansson, A. N., Montgomery, M., Somers, M. A. J.
Pages: 39-44
Publication date: 2009
Peer-reviewed: Yes

Publication information
Journal: Materials at High Temperatures
Volume: 26
Issue number: 1
ISSN (Print): 0960-3409
Ratings:
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.195 SNIP 0.532
Web of Science (2009): Indexed yes
Original language: English
Keywords: steam oxidation, austenitic stainless steel, inner oxide zone
DOIs:
10.3184/096034009X400005
Source: orbit
Source ID: 247652
Research output: Contribution to journal › Journal article – Annual report year: 2009 › Research › peer-review