Defining B_c, B^* and B_{ϕ} for YBCO Thin Films

The accommodation field, B^*, is generally defined to be the field at which the cross over from single vortex pinning to collective pinning occurs. It is determined from magnetization curves as the point where the J_c plateau ends and it is used as a convenient way of comparing the pinning properties of superconducting films. Similarly, the characteristic field, B_c, can be obtained from magneto-optical (MO) images from when the flux fronts meet in the middle of the film. The matching field, B_{ϕ}, at which there is one vortex line per pinning site, is sometimes thought to be the same as B^*, but in BaZrO$_3$-doped YBa$_2$Cu$_3$O$_7$ films the calculated B_{ϕ} is much higher than the observed B^*. B_{ϕ} can be determined from angular dependent transport measurements. All of the field values correspond to some special case in the flux pinning in the film and relate to J_c. In this work we have determined B_c, B^* and B_{ϕ} for different kinds of YBCO films using MO, magnetization and transport measurements to reveal the deeper meaning of the special fields.