Abstract
An accreting millisecond X-ray pulsar, IGR J17591−2342 was discovered in 2018 August in scans of the Galactic bulge and center by the International Gamma-Ray Astrophysics Laboratory X-ray and gamma-ray observatory. It exhibited an unusual outburst profile with multiple peaks in the X-ray, as observed by several X-ray satellites over 3 months. Here we present observations of this source performed in the X-ray/gamma-ray and near-infrared domains and focus on a simultaneous observation performed with the Chandra High Energy Transmission Gratings Spectrometer (HETGS) and the Neutron Star Interior Composition Explorer (NICER). The HETGS provides high-resolution spectra of the Si edge region that yield clues as to the source’s distance and reveal evidence (at 99.999% significance) of an outflow with a velocity of 2800 km s−1. We demonstrate good agreement between the NICER and HETGS continua, provided that one properly accounts for the differing manners in which these instruments view the dust-scattering halo in the source’s foreground. Unusually, we find a possible set of Ca lines in the HETGS spectra (with significances ranging from 97.0% to 99.7%). We hypothesize that IGR J17591−2342 is a neutron star low-mass X-ray binary at the distance of the Galactic bulge or beyond that may have formed from the collapse of a white dwarf system in a rare, calcium-rich Type Ib supernova explosion.
Original language | English |
---|---|
Article number | 69 |
Journal | Astrophysical Journal |
Volume | 874 |
Issue number | 1 |
Number of pages | 13 |
ISSN | 0004-637X |
DOIs | |
Publication status | Published - 2019 |
Keywords
- X-ray binaries
- Acretion
- Accretion disks
- Pulsars: general
- Stars: low-mass
- Stars: neutron
- X-rays: binaries