TY - JOUR
T1 - Hypericum Perforatum Callus Extract-Loaded Composite Hydrogel with Diverse Bioactivities for Enhanced Wound Healing and Fibrosis Prevention
AU - Zivari-Ghader, Tayebeh
AU - Shokouhi, Behrooz
AU - Kosari-Nasab, Morteza
AU - Davaran, Soodabeh
AU - Hamishehkar, Hamed
AU - Farahpour, Mohammad Reza
AU - Rashidi, Mohammad-Reza
AU - Mehrali, Mehdi
PY - 2024
Y1 - 2024
N2 - Plant Callus are a valuable source of pluripotent stem cells and bioactive phytochemicals. Meanwhile, the Hypericum perforatum callus extract (HPCE) is particularly rich in compounds such as hyperforin, hypericin, quercetin, and other phenolic and flavonoid derivatives. These phytochemicals exhibit strong antibacterial, antioxidant, anti-inflammatory, and anti-fibrotic properties, making them promising for wound healing. One of the most critical challenges following wound healing is the formation of fibrosis, which can compromise the complex structural integrity of skin. To address this issue, a poly(vinyl alcohol)/chitosan/alginate (PCA) wound dressing loaded with HPCE is developed. This hydrogel dressing features a porous structure with suitable mechanical properties and a high swelling capacity, potentially enhancing its effectiveness in promoting tissue regeneration and wound healing. In vitro studies have confirmed its biocompatibility, cell proliferation, and cell adhesion properties. Additionally, the dressing has demonstrated the ability to inhibit the proliferation of certain antibiotic-resistant bacteria. The in vivo studies revealed the anti-inflammatory properties, promotion of angiogenesis, facilitation of re-epithelialization, and stimulation of collagen deposition of the dressing under investigation. Moreover, the immunohistochemistry analysis of the two key markers, p16 and p53, has shown that the application of the dressing helps prevent fibrosis after wound healing.
AB - Plant Callus are a valuable source of pluripotent stem cells and bioactive phytochemicals. Meanwhile, the Hypericum perforatum callus extract (HPCE) is particularly rich in compounds such as hyperforin, hypericin, quercetin, and other phenolic and flavonoid derivatives. These phytochemicals exhibit strong antibacterial, antioxidant, anti-inflammatory, and anti-fibrotic properties, making them promising for wound healing. One of the most critical challenges following wound healing is the formation of fibrosis, which can compromise the complex structural integrity of skin. To address this issue, a poly(vinyl alcohol)/chitosan/alginate (PCA) wound dressing loaded with HPCE is developed. This hydrogel dressing features a porous structure with suitable mechanical properties and a high swelling capacity, potentially enhancing its effectiveness in promoting tissue regeneration and wound healing. In vitro studies have confirmed its biocompatibility, cell proliferation, and cell adhesion properties. Additionally, the dressing has demonstrated the ability to inhibit the proliferation of certain antibiotic-resistant bacteria. The in vivo studies revealed the anti-inflammatory properties, promotion of angiogenesis, facilitation of re-epithelialization, and stimulation of collagen deposition of the dressing under investigation. Moreover, the immunohistochemistry analysis of the two key markers, p16 and p53, has shown that the application of the dressing helps prevent fibrosis after wound healing.
U2 - 10.1002/smll.202407112
DO - 10.1002/smll.202407112
M3 - Journal article
C2 - 39498666
SN - 1613-6810
VL - 20
JO - Small
JF - Small
IS - 52
M1 - e2407112
ER -