TY - JOUR
T1 - Hydrogen independent expression of hupSL genes in Thiocapsa roseopersicina BBS
AU - Kovács, Ákos T.
AU - Rákhely, Gábor
AU - Balogh, Judit
AU - Maróti, Gergely
AU - Cournac, Laurent
AU - Carrier, Patrick
AU - Mészáros, Lívia S.
AU - Peltier, Gilles
AU - Kovàcs, Kornél L.
PY - 2005
Y1 - 2005
N2 - The expression of many membrane bound [NiFe] hydrogenases is regulated by their substrate molecule, hydrogen. The HupSL hydrogenase, encoded in the hupSLCDHIR operon, probably plays a role in hydrogen recycling in the phototrophic purple bacterium, Thiocapsa roseopersicina BBS. RpoN, coding for sigma factor 54, was shown to be important for expression, suggesting a regulated biosynthsis from the hup gene cluster. The response regulator gene, hupR, has been identified in the hup operon and expression of hupSL was reduced in a chromosomal hupR mutant, which indicated that HupR was implicated in the activation process. The hupT and hupUV genes were isolated, and show similarity to the histidine kinase element of the H2-driven signal transduction system and to the regulatory hydrogenases of Ralstonia eutropha and Rhodobacter capsulatus, respectively. Although the genes of the entire H2 sensing and regulation system were present, the expression of the hupSL genes was not affected by the presence or absence of H2. Using reverse transcription PCR, we could not detect any mRNA specific to the hupTUV genes in cells grown under diverse conditions. The hupT and hupUV mutant strains had the same phenotype as the wild-type strains. The hupT gene product, expressed from a plasmid, repressed HupSL synthesis as expected while introduction of actively expressed hupTUV genes together derepressed the HupSL activity in T. roseopersicina. The gene product of hupUV behaves similarly to other regulatory hydrogenases and shows H-D exchange activity.
AB - The expression of many membrane bound [NiFe] hydrogenases is regulated by their substrate molecule, hydrogen. The HupSL hydrogenase, encoded in the hupSLCDHIR operon, probably plays a role in hydrogen recycling in the phototrophic purple bacterium, Thiocapsa roseopersicina BBS. RpoN, coding for sigma factor 54, was shown to be important for expression, suggesting a regulated biosynthsis from the hup gene cluster. The response regulator gene, hupR, has been identified in the hup operon and expression of hupSL was reduced in a chromosomal hupR mutant, which indicated that HupR was implicated in the activation process. The hupT and hupUV genes were isolated, and show similarity to the histidine kinase element of the H2-driven signal transduction system and to the regulatory hydrogenases of Ralstonia eutropha and Rhodobacter capsulatus, respectively. Although the genes of the entire H2 sensing and regulation system were present, the expression of the hupSL genes was not affected by the presence or absence of H2. Using reverse transcription PCR, we could not detect any mRNA specific to the hupTUV genes in cells grown under diverse conditions. The hupT and hupUV mutant strains had the same phenotype as the wild-type strains. The hupT gene product, expressed from a plasmid, repressed HupSL synthesis as expected while introduction of actively expressed hupTUV genes together derepressed the HupSL activity in T. roseopersicina. The gene product of hupUV behaves similarly to other regulatory hydrogenases and shows H-D exchange activity.
KW - [NiFe] hydrogenase
KW - Hydrogen sensor
KW - Thiocapsa roseopersicina
KW - Transcriptional regulation
U2 - 10.1111/j.1742-4658.2005.04896.x
DO - 10.1111/j.1742-4658.2005.04896.x
M3 - Journal article
C2 - 16156799
AN - SCOPUS:25444466198
SN - 1742-464X
VL - 272
SP - 4807
EP - 4816
JO - FEBS Journal
JF - FEBS Journal
IS - 18
ER -