TY - JOUR
T1 - Hydrogen and methane production through two-stage mesophilic anaerobic digestion of olive pulp
AU - Koutrouli, Eleni C.
AU - Kalfas, Haralabos
AU - Gavala, Hariklia N.
AU - V. Skiadas, Ioannis
AU - Stamatelatou, Katerina
AU - Lyberatos, Gerasimos
PY - 2009
Y1 - 2009
N2 - The present study focused on the anaerobic biohydrogen production from olive pulp (two phase olive mill wastes, TPOMW) and the subsequent anaerobic treatment of the effluent for methane production under mesophilic conditions in a two-stage process. Biohydrogen production from water-diluted (1:4) olive pulp was investigated at hydraulic retention times (HRT) of 30 h, 14.5 h and 7.5 h while methane production from the effluent of hydrogenogenic reactor was studied at 20 d, 15 d, 10 d and 5 d HRT. In comparison with previous studies, it has been shown that the thermophilic hydrogen production process was more efficient than the mesophilic one in both hydrogen production rate and yield. The methanogenic reactor was successfully operated at 20, 15 and 10 days HRT while it failed when an HRT of 5 days was applied. Methane productivity reached the maximum value of 1.13 +/- 0.08 L/L/d at 10 days HRT whereas the methane yield increased with the HRT. The Anaerobic Digestion Model no. 1 (ADM1) was applied to the obtained experimental data from the methanogenic reactor to simulate the digester response at all HRT tested. The ability of the model to predict the experimental results was evident even in the case of the process failure. thus implying that the ADM1 could be a valuable tool for process design even in the case of a complex feedstock. In general, the two-stage anaerobic digestion proved to be a stable, reliable and effective process for energy recovery and stabilization treatment of olive pulp.
AB - The present study focused on the anaerobic biohydrogen production from olive pulp (two phase olive mill wastes, TPOMW) and the subsequent anaerobic treatment of the effluent for methane production under mesophilic conditions in a two-stage process. Biohydrogen production from water-diluted (1:4) olive pulp was investigated at hydraulic retention times (HRT) of 30 h, 14.5 h and 7.5 h while methane production from the effluent of hydrogenogenic reactor was studied at 20 d, 15 d, 10 d and 5 d HRT. In comparison with previous studies, it has been shown that the thermophilic hydrogen production process was more efficient than the mesophilic one in both hydrogen production rate and yield. The methanogenic reactor was successfully operated at 20, 15 and 10 days HRT while it failed when an HRT of 5 days was applied. Methane productivity reached the maximum value of 1.13 +/- 0.08 L/L/d at 10 days HRT whereas the methane yield increased with the HRT. The Anaerobic Digestion Model no. 1 (ADM1) was applied to the obtained experimental data from the methanogenic reactor to simulate the digester response at all HRT tested. The ability of the model to predict the experimental results was evident even in the case of the process failure. thus implying that the ADM1 could be a valuable tool for process design even in the case of a complex feedstock. In general, the two-stage anaerobic digestion proved to be a stable, reliable and effective process for energy recovery and stabilization treatment of olive pulp.
KW - Hydrogen
KW - ADM1
KW - Methane
KW - Olive pulp
KW - Two-stage anaerobic digestion
U2 - 10.1016/j.biortech.2009.01.037
DO - 10.1016/j.biortech.2009.01.037
M3 - Journal article
C2 - 19246194
SN - 0960-8524
VL - 100
SP - 3718
EP - 3723
JO - Bioresource Technology
JF - Bioresource Technology
ER -