Hydrodynamics under Large-Scale Waves Breaking over a Barred Beach - DTU Orbit
(11/11/2019)

Hydrodynamics under Large-Scale Waves Breaking over a Barred Beach

This paper shows preliminary results of experiments obtained in a large-scale wave flume under monochromatic waves plunging over a fixed bar. Velocity measurements were conducted using acoustic and optical instruments at 22 cross-shore locations ranging from the final part of the shoaling zone up to the inner surf zone. The measurements included the bottom boundary layer and the lower part of the water column and provided insights on the mean velocity distribution, turbulent velocity fluctuations and Reynolds stresses. The mean velocity is generally seaward directed. Magnitudes of the mean velocity are small in the shoaling region and increase above the bar crest, especially in the higher part of the water column, while magnitudes in the boundary layer are relatively small. Fluid from the inner surf zone is transported offshore by the undertow and pushed up near the shoreward face of the bar, thus largely feeding the onshore mass transport above trough level. As a result a large recirculation cell located just above the trough of the bar is generated where currents and turbulent velocity fluctuations are strong.

General information
Publication status: Published
Organisations: Fluid Mechanics, Coastal and Maritime Engineering, Department of Mechanical Engineering, University of Catania, University of Aberdeen, University of Twente, University of Messina, University of Liverpool, University of Hull, Université Grenoble Alpes, Utrecht University, Polytechnic University of Catalonia
Number of pages: 10
Publication date: 2018
Peer-reviewed: Yes
Event: Paper presented at 7th International Conference on the Application of Physical Modelling in Coastal and Port Engineering and Science (Coastlab18), Santander, Spain.
Keywords: Breaking waves, Surf zone, Barred beach, Turbulence, Undertow
Electronic versions: Scanduraetal2018_HYBRID_Coastlab18_paper.pdf
Research output: Contribution to conference Paper – Annual report year: 2018 Research peer-review