Abstract
Modelling the spatial spread of vector borne diseases, one may choose methods ranging from
statistic to process oriented. One often used statistic tool is the empirical spread kernel. An empiric
spread kernel fitted to outbreak data provides hints on the spread mechanisms, and may provide a
good estimate on how future epidemics could proceed under similar conditions. However, a number
of variables influence the spread of vector borne diseases. If one of these changes significantly after
an outbreak, it needs to be incorporated into the model to improve the prediction on future
outbreaks. Examples of such changes are: vaccinations, acquired immunity, vector density and
control, meteorological variations, wind pattern, and so on. Including more and more variables
leads to a more process oriented model. A full process oriented approach simulates the movement
of virus between vectors and host, describing density and motion of vectors/hosts, climatic
variables, and so on will theoretically be able to describe an outbreak under any circumstances. It
will most likely contain parameters not very well established, and is also very heavy in computer
time. Nevertheless, we have tried to create a relatively detailed simulation spread model. And by
using empirical spread kernels from past outbreaks we have fitted some of the more uncertain
parameters for this case study.
A stochastic simulation model was developed for the spread of bluetongue virus. In the model hosts
(cattle) and vectors (Culicoides) are distributed onto a grid representing farm/field quadrants of 1
hectare. Each quadrant has a host SEIR model (Susceptible Exposed Infectious Recovered) and a
vector SEI model attached. Transmission of virus between hosts and vectors depend on many
parameters most of which are temperature dependent. Spatial movement of virus between quadrants
is modelled by local flight and wind spread of vectors.
The simulated spatial spread rate of virus is very dependent on movement parameters, but also the
distribution and total numbers of hosts and vectors influenced the spread of virus. With empirical
spread kernels from past outbreaks and known distributions of host animals, it was possible to fit
parameter values of vector movement.
The final model including the fitted process based movement parameters is used to simulate e.g.
50% of cattle protected by acquired immunity after a first epidemic outbreak. We can then
demonstrate how this changes the spread kernel for future outbreaks.
Original language | English |
---|---|
Publication date | 2011 |
Publication status | Published - 2011 |
Event | 5th Annual Meeting EPIZONE - Arnhem, Netherlands Duration: 11 Apr 2011 → 14 Apr 2011 http://epizone-eu.net/6th-annual-meeting/former-annual-meetings/5th-annual-meeting.aspx |
Conference
Conference | 5th Annual Meeting EPIZONE |
---|---|
Country/Territory | Netherlands |
City | Arnhem |
Period | 11/04/2011 → 14/04/2011 |
Internet address |