hipBA toxin-antitoxin systems mediate persistence in Caulobacter crescentus

Charlie Y. Huang, Carlos Gonzalez-Lopez, Céline Henry, Ivan Mijakovic, Kathleen R. Ryan*

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

18 Downloads (Pure)

Abstract

Antibiotic persistence is a transient phenotypic state during which a bacterium can withstand otherwise lethal antibiotic exposure or environmental stresses. In Escherichia coli, persistence is promoted by the HipBA toxin-antitoxin system. The HipA toxin functions as a serine/threonine kinase that inhibits cell growth, while the HipB antitoxin neutralizes the toxin. E. coli HipA inactivates the glutamyl-tRNA synthetase GltX, which inhibits translation and triggers the highly conserved stringent response. Although hipBA operons are widespread in bacterial genomes, it is unknown if this mechanism is conserved in other species. Here we describe the functions of three hipBA modules in the alpha-proteobacterium Caulobacter crescentus. The HipA toxins have different effects on growth and macromolecular syntheses, and they phosphorylate distinct substrates. HipA1 and HipA2 contribute to antibiotic persistence during stationary phase by phosphorylating the aminoacyl-tRNA synthetases GltX and TrpS. The stringent response regulator SpoT is required for HipA-mediated antibiotic persistence, but persister cells can form in the absence of all hipBA operons or spoT, indicating that multiple pathways lead to persister cell formation in C. crescentus.
Original languageEnglish
Article number2865
JournalScientific Reports
Volume10
Issue number1
ISSN2045-2322
DOIs
Publication statusPublished - 2020

Cite this