High-quality factor, high-confinement microring resonators in 4H-silicon carbide-on-insulator

Research output: Contribution to journalJournal article – Annual report year: 2019Researchpeer-review

Documents

DOI

View graph of relations

Silicon carbide (SiC) exhibits promising material properties for nonlinear integrated optics. We report on a SiC-on-insulator platform based on crystalline 4H-SiC and demonstrate high-confinement SiC microring resonators with sub-micron waveguide cross-sectional dimensions. The Q factor of SiC microring resonators in such a sub-micron waveguide dimension is improved by a factor of six after surface roughness reduction by applying a wet oxidation process. We achieve a high Q factor (73,000) for such devices and show engineerable dispersion from normal to anomalous dispersion by controlling the waveguide cross-sectional dimension, which paves the way toward nonlinear applications in SiC microring resonators.

Original languageEnglish
JournalOptics Express
Volume27
Issue number9
Pages (from-to)13053-13060
ISSN1094-4087
DOIs
Publication statusPublished - 29 Apr 2019
CitationsWeb of Science® Times Cited: No match on DOI
Download as:
Download as PDF
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
Word

Download statistics

No data available

ID: 177530389