Highly localized H2O librational motion as a far-infrared spectroscopic probe for microsolvation of organic molecules

Research output: Contribution to journalJournal article – Annual report year: 2019Researchpeer-review

Standard

Highly localized H2O librational motion as a far-infrared spectroscopic probe for microsolvation of organic molecules. / Mihrin, D.; Andersen, J.; Jakobsen, P. W.; Wugt Larsen, R.

In: Physical Chemistry Chemical Physics, Vol. 21, No. 4, 2019, p. 1717-1723.

Research output: Contribution to journalJournal article – Annual report year: 2019Researchpeer-review

Harvard

APA

CBE

MLA

Vancouver

Author

Bibtex

@article{2741bd9a35e749c290586873c9d7ab9b,
title = "Highly localized H2O librational motion as a far-infrared spectroscopic probe for microsolvation of organic molecules",
abstract = "The most prominent spectroscopic observable for the hydrogen bonding between individual molecules in liquid water is the broad absorption band detected in the spectral region between 300 and 900 cm-1. The present work demonstrates how the associated large-amplitude out-of-plane OH librational motion of H2O molecules also directly reflects the microsolvation of organic compounds. This highly localized OH librational motion of the first solvating H2O molecule causes a significant change of dipole moment and gives rise to a strong characteristic band in the far-infrared spectral region, which is correlated quantitatively with the complexation energy. The out-of-plane OH librational band origins ranging from 324.5 to 658.9 cm-1 have been assigned experimentally for a series of four binary hydrogen-bonded H2O complexes embedded in solid neon involving S-, O- and N-containing compounds with increasing hydrogen bond acceptor capability. The hydrogen bond energies for altogether eight binary H2O complexes relative to the experimental value of 13.2 ± 0.12 kJ mol-1 for the prototypical (H2O)2 system [Rocher-Casterline et al., J. Chem. Phys., 2011, 134, 211101] are revealed directly by these far-infrared spectroscopic observables. The far-infrared spectral signatures are able to capture even minor differences in the hydrogen bond acceptor capability of O atoms with slightly different alkyl substituents in the order H-O-C(CH3)3 > CH3-O-CH3 > H-O-CH(CH3)2 > H-O-CH2CH3.",
author = "D. Mihrin and J. Andersen and Jakobsen, {P. W.} and {Wugt Larsen}, R.",
year = "2019",
doi = "10.1039/c8cp05985c",
language = "English",
volume = "21",
pages = "1717--1723",
journal = "Physical Chemistry Chemical Physics",
issn = "1463-9076",
publisher = "Royal Society of Chemistry",
number = "4",

}

RIS

TY - JOUR

T1 - Highly localized H2O librational motion as a far-infrared spectroscopic probe for microsolvation of organic molecules

AU - Mihrin, D.

AU - Andersen, J.

AU - Jakobsen, P. W.

AU - Wugt Larsen, R.

PY - 2019

Y1 - 2019

N2 - The most prominent spectroscopic observable for the hydrogen bonding between individual molecules in liquid water is the broad absorption band detected in the spectral region between 300 and 900 cm-1. The present work demonstrates how the associated large-amplitude out-of-plane OH librational motion of H2O molecules also directly reflects the microsolvation of organic compounds. This highly localized OH librational motion of the first solvating H2O molecule causes a significant change of dipole moment and gives rise to a strong characteristic band in the far-infrared spectral region, which is correlated quantitatively with the complexation energy. The out-of-plane OH librational band origins ranging from 324.5 to 658.9 cm-1 have been assigned experimentally for a series of four binary hydrogen-bonded H2O complexes embedded in solid neon involving S-, O- and N-containing compounds with increasing hydrogen bond acceptor capability. The hydrogen bond energies for altogether eight binary H2O complexes relative to the experimental value of 13.2 ± 0.12 kJ mol-1 for the prototypical (H2O)2 system [Rocher-Casterline et al., J. Chem. Phys., 2011, 134, 211101] are revealed directly by these far-infrared spectroscopic observables. The far-infrared spectral signatures are able to capture even minor differences in the hydrogen bond acceptor capability of O atoms with slightly different alkyl substituents in the order H-O-C(CH3)3 > CH3-O-CH3 > H-O-CH(CH3)2 > H-O-CH2CH3.

AB - The most prominent spectroscopic observable for the hydrogen bonding between individual molecules in liquid water is the broad absorption band detected in the spectral region between 300 and 900 cm-1. The present work demonstrates how the associated large-amplitude out-of-plane OH librational motion of H2O molecules also directly reflects the microsolvation of organic compounds. This highly localized OH librational motion of the first solvating H2O molecule causes a significant change of dipole moment and gives rise to a strong characteristic band in the far-infrared spectral region, which is correlated quantitatively with the complexation energy. The out-of-plane OH librational band origins ranging from 324.5 to 658.9 cm-1 have been assigned experimentally for a series of four binary hydrogen-bonded H2O complexes embedded in solid neon involving S-, O- and N-containing compounds with increasing hydrogen bond acceptor capability. The hydrogen bond energies for altogether eight binary H2O complexes relative to the experimental value of 13.2 ± 0.12 kJ mol-1 for the prototypical (H2O)2 system [Rocher-Casterline et al., J. Chem. Phys., 2011, 134, 211101] are revealed directly by these far-infrared spectroscopic observables. The far-infrared spectral signatures are able to capture even minor differences in the hydrogen bond acceptor capability of O atoms with slightly different alkyl substituents in the order H-O-C(CH3)3 > CH3-O-CH3 > H-O-CH(CH3)2 > H-O-CH2CH3.

U2 - 10.1039/c8cp05985c

DO - 10.1039/c8cp05985c

M3 - Journal article

VL - 21

SP - 1717

EP - 1723

JO - Physical Chemistry Chemical Physics

JF - Physical Chemistry Chemical Physics

SN - 1463-9076

IS - 4

ER -