TY - GEN
T1 - High power, ultra-broadband supercontinuum source based on highly GeO2 doped silica fiber
AU - Jain, Deepak
AU - Sidharthan, Raghuraman
AU - Moselund, Peter M.
AU - Yoo, Seongwoo
AU - Ho, Daryl
AU - Bang, Ole
N1 - Copyright 2017 Society of Photo Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.
PY - 2017
Y1 - 2017
N2 - We demonstrate a 74 mol % GeO2 doped fiber for mid-infrared supercontinuum generation. Experiments ensure a highest output power for a broadest spectrum from 700nm to 3200nm from this fiber, while being pumped by a broadband 4 stage Erbium fiber based MOPA. The effect of repetition rate of pump source and length of Germania-doped fiber has also been investigated. Further, Germania doped fiber has been pumped by conventional Silica based photonic crystal fiber supercontinuum source. At low power, a considerable broadening of 200-300nm was observed. Further broadening of spectrum was limited due to limited power of pump source. Our investigations reveal the unexploited potential of Germania doped fiber for mid-infrared supercontinuum generation. This measurement ensures a possibility of Germania based photonic crystal fiber or a step-index fiber supercontinuum source for high power ultra-broad band emission being pumped a 1060nm or a 1550nm laser source. To the best of our knowledge, this is the record power, ultra-broadband, and all-fiberized SC light source based on Silica and Germania fiber ever demonstrated to the date.
AB - We demonstrate a 74 mol % GeO2 doped fiber for mid-infrared supercontinuum generation. Experiments ensure a highest output power for a broadest spectrum from 700nm to 3200nm from this fiber, while being pumped by a broadband 4 stage Erbium fiber based MOPA. The effect of repetition rate of pump source and length of Germania-doped fiber has also been investigated. Further, Germania doped fiber has been pumped by conventional Silica based photonic crystal fiber supercontinuum source. At low power, a considerable broadening of 200-300nm was observed. Further broadening of spectrum was limited due to limited power of pump source. Our investigations reveal the unexploited potential of Germania doped fiber for mid-infrared supercontinuum generation. This measurement ensures a possibility of Germania based photonic crystal fiber or a step-index fiber supercontinuum source for high power ultra-broad band emission being pumped a 1060nm or a 1550nm laser source. To the best of our knowledge, this is the record power, ultra-broadband, and all-fiberized SC light source based on Silica and Germania fiber ever demonstrated to the date.
U2 - 10.1117/12.2251648
DO - 10.1117/12.2251648
M3 - Article in proceedings
VL - 10083
T3 - Proceedings of SPIE - The International Society for Optical Engineering
BT - Proceedings of SPIE
PB - SPIE - International Society for Optical Engineering
T2 - Fiber Lasers XIV: Technology and Systems
Y2 - 27 January 2017 through 1 February 2017
ER -