High-performance oxygen reduction and evolution carbon catalysis: From mechanistic studies to device integration

John W.F. To, Jia Wei Desmond Ng, Samira Siahrostami, Ai Leen Koh, Yangjin Lee, Zhihua Chen, Kara D. Fong, Shucheng Chen, Jiajun He, Won Gyu Bae, Jennifer Wilcox, Hu Young Jeong, Kwanpyo Kim, Felix Studt, Jens K. Nørskov*, Thomas F. Jaramillo, Zhenan Bao

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

The development of high-performance and low-cost oxygen reduction and evolution catalysts that can be easily integrated into existing devices is crucial for the wide deployment of energy storage systems that utilize O2-H2O chemistries, such as regenerative fuel cells and metal-air batteries. Herein, we report an NH3-activated N-doped hierarchical carbon (NHC) catalyst synthesized via a scalable route, and demonstrate its device integration. The NHC catalyst exhibited good performance for both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), as demonstrated by means of electrochemical studies and evaluation when integrated into the oxygen electrode of a regenerative fuel cell. The activities observed for both the ORR and the OER were comparable to those achieved by state-of-the-art Pt and Ir catalysts in alkaline environments. We have further identified the critical role of carbon defects as active sites for electrochemical activity through density functional theory calculations and high-resolution TEM visualization. This work highlights the potential of NHC to replace commercial precious metals in regenerative fuel cells and possibly metal-air batteries for cost-effective storage of intermittent renewable energy.

Original languageEnglish
JournalNano Research
Volume10
Issue number4
Pages (from-to)1163-1177
Number of pages15
ISSN1998-0124
DOIs
Publication statusPublished - 2017
Externally publishedYes

Keywords

  • Density functional theory
  • Electrocatalysis
  • Porous carbon

Cite this

To, J. W. F., Ng, J. W. D., Siahrostami, S., Koh, A. L., Lee, Y., Chen, Z., Fong, K. D., Chen, S., He, J., Bae, W. G., Wilcox, J., Jeong, H. Y., Kim, K., Studt, F., Nørskov, J. K., Jaramillo, T. F., & Bao, Z. (2017). High-performance oxygen reduction and evolution carbon catalysis: From mechanistic studies to device integration. Nano Research, 10(4), 1163-1177. https://doi.org/10.1007/s12274-016-1347-8