TY - JOUR
T1 - High-order Spatial Interactions Enhanced Lightweight Model for Optical Remote Sensing Image-based Small Ship Detection
AU - Yin, Yifan
AU - Cheng, Xu
AU - Shi, Fan
AU - Liu, Xiufeng
AU - Huo, Huan
AU - Chen, Shengyong
PY - 2024
Y1 - 2024
N2 - Accurate and reliable optical remote sensing image-based small-ship detection is crucial for maritime surveillance systems, but existing methods often struggle with balancing detection performance and computational complexity. In this paper, we propose a novel lightweight framework called HSI-ShipDetectionNet that is based on high-order spatial interactions and is suitable for deployment on resource-limited platforms, such as satellites and unmanned aerial vehicles. HSI-ShipDetectionNet includes a prediction branch specifically for tiny ships and a lightweight hybrid attention block for reduced complexity. Additionally, the use of a high-order spatial interactions module improves advanced feature understanding and modeling ability. Our model is evaluated using the public Kaggle and FAIR1M marine ship detection datasets and compared with multiple state-of-the-art models including small object detection models, lightweight detection models, and ship detection models. The results show that HSI-ShipDetectionNet outperforms the other models in terms of detection performance while being lightweight and suitable for deployment on resource-limited platforms.
AB - Accurate and reliable optical remote sensing image-based small-ship detection is crucial for maritime surveillance systems, but existing methods often struggle with balancing detection performance and computational complexity. In this paper, we propose a novel lightweight framework called HSI-ShipDetectionNet that is based on high-order spatial interactions and is suitable for deployment on resource-limited platforms, such as satellites and unmanned aerial vehicles. HSI-ShipDetectionNet includes a prediction branch specifically for tiny ships and a lightweight hybrid attention block for reduced complexity. Additionally, the use of a high-order spatial interactions module improves advanced feature understanding and modeling ability. Our model is evaluated using the public Kaggle and FAIR1M marine ship detection datasets and compared with multiple state-of-the-art models including small object detection models, lightweight detection models, and ship detection models. The results show that HSI-ShipDetectionNet outperforms the other models in terms of detection performance while being lightweight and suitable for deployment on resource-limited platforms.
U2 - 10.1109/TGRS.2023.3349168
DO - 10.1109/TGRS.2023.3349168
M3 - Journal article
SN - 0196-2892
VL - 62
JO - IEEE Transactions on Geoscience and Remote Sensing
JF - IEEE Transactions on Geoscience and Remote Sensing
M1 - 4201416
ER -